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High-quality simulated data is crucial for particle physics 
discoveries. Therefore, parton shower algorithms are a major 
building block of the data synthesis in event generator programs.  
 
With quantum computers' rapid and continuous development, 
dedicated algorithms are required to exploit the potential that 
quantum computers provide to address problems in high-energy 
physics.  
 
This paper presents a novel approach to synthesising parton 
showers using the Discrete QCD method. The algorithm benefits 
from an elegant Quantum Walk implementation which can be 
embedded into the classical toolchain.  
 
This is the first time a Noisy Intermediate-Scale Quantum (NISQ) 
device has been used to simulate realistic high-energy particle 
collision events.
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Figure 1: Schematic of the quantum circuit for one slice in the fold. For each slice, the algorithm is split

into three distinct sections: (1) The coin operation, C, controls from the relevant walk memory to apply

the correct coin operation to the coin register; (2) the shift operation first increases the walker’s position

along the base of the fold, B, and then controls from the coin outcome to shift the walker accordingly

to increase the grove baseline, S, and e↵ective gluon position, S
0
; (3) The memory operation, M , then

updates the memory register with the outcome of the coin operation. This is then repeated for all slices

in the primary fold, and any subsequent folds formed.
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Figure 2: Schematic for a fold with a single slice of two tiles. There are two equal probability outcomes,

thus a Hadamard coin is used: 50% chance of an e↵ective gluon being created is represented by the |1i
state on the coin qubit. The shift operation increases the walker along the base of the fold, and then,

depending on the outcome of the coin operation, creates a new fold representing an e↵ective gluon. The

gluon is then recorded in the gluon register, and the memory operation updates the memory register with

the outcome of the coin operation. Note that no further calculation is needed, as the new fold created in

the event of an emitted e↵ective gluon is only 1 tile. If the new fold could produce further e↵ective gluons,

then the algorithm is applied recursively until no gluon bearing folds are produced.
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(a) The phase space of effective gluon emission is discrete, since     gluons within a 
rapidity region act coherently due to running-coupling effects. The  (or equivalently 
the ) dimension is also quantised, since      additional phase space folds opening due to 
gluon emission are quantised in units of .
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Figure 1: The phase space of e↵ective gluon emission is discrete, since 1 gluons within a
rapidity region �yg act coherently due to running-coupling e↵ects. The  (or equivalently
the k

2
?) dimension is also quantised, since 2 additional phase space folds opening due to

gluon emission are quantised in units of �yg. See main text for more details.

choice of an evolution variable t, and c) the choice of a momentum mapping sij , sjk $ t, ⇠

which determines the relations between pre-and post-decay momenta.

It is worth noting that all conventional state-of-the-art parton showers use slight vari-

ations of a single algorithm – the “veto algorithm” – to solve Eq. 2.2 numerically. This

algorithm treats the variables t and ⇠ as continuous degrees of freedom. It is thus unsuit-

able for (current) quantum devices. The following section will develop other algorithmic

solutions of Eq. 2.2, guided by keeping in mind the feasibility of NISQ devices.

2.1 Reinterpreting classical parton shower algorithms as random walks

This section extends the classical shower algorithm toolbox by performing several abstrac-

tions of the features of dipole showers. We are led to conclude that the showering process

can be described by creating and sampling from a fixed set of primitive fractal structures,

followed by a translation of the chosen primitive structure into scattering event momenta.

The first step has an elegant implementation on intermediate-scale quantum devices.

The first abstraction to consider is removing the independent treatment of decay prob-

ability and momentum-space integration by absorbing the non-uniform probability density

in Eq. 2.1 into the integration measure. This can be obtained by choosing a phase-space

parametrisation in terms of the gluon’s transverse momentum,
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which leads to

dP (q(pI)q̄(pK) ! q(pi)g(pj)q̄(pk)) '=
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where ⇤2 is an arbitrary mass scale. Within this phase space parametrisation, allowed

dipole decays are constrained to a triangular region of height L = ln(sIK/⇤2) in the (y, )-

plane, as illustrated by the left-hand panel of Fig. 1. Due to the colour charge of an emitted
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rapidity region �yg act coherently due to running-coupling e↵ects. The  (or equivalently
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where ⇤2 is an arbitrary mass scale. Within this phase space parametrisation, allowed

dipole decays are constrained to a triangular region of height L = ln(sIK/⇤2) in the (y, )-

plane, as illustrated by the left-hand panel of Fig. 1. Due to the colour charge of an emitted
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(b) The Discrete QCD parton shower algorithm can be re-interpreted as a one-
dimensional random walk, since    the baseline of the folded structure carries all 
necessary information. The “grove-like” baseline structure can     be generated by a 
heavily constrained two-dimensional random walk. Due to the low fractal dimension of the 
grove structure, a one-dimensional random-walk algorithm       is equally viable. For       , 
the notation  indicates that option  was picked out of  choices. The two-
particle invariants  can be read off by following the path from particle  to particle , 
and skipping segments whose colour was created and reabsorbed along the way.

n /nmax n nmax
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Figure 2: The Discrete QCD parton shower algorithm can be re-interpreted as a one-
dimensional random walk, since 3 the baseline of the folded structure carries all necessary
information. The “grove-like” baseline structure can A be generated by a heavily con-
strained two-dimensional random walk. Due to the low fractal dimension of the grove
structure, a one-dimensional random-walk algorithm B is equally viable. For B , the no-
tation n/nmax indicates that option n was picked out of nmax choices. The two-particle
invariants (ln(sij)) can be read o↵ by following the path from particle i to particle j, and
skipping segments whose colour was created and reabsorbed along the way (e.g. skipping
the pink segments when calculating the invariant mass of the green and blue gluon tips).

showers, which rely on sampling the no-emission probability � with the “veto algorithm”.

Once an e↵ective gluon has been selected, new triangles are folded out of the parent

region. E↵ective gluon positions in this fold are again quantised into tiles of dimensions

�yg ⇥2�yg, as illustrated by the upper left part of Fig. 2. However, a simpler interpretation

is possible since the height and the y�range of each fold are redundant: All information

necessary to calculate momentum invariants sij can be read o↵ the baseline of the folded

triangle structure, shown in the lower left part of Fig. 2. We will call a specific baseline

structure a “grove”. The shortest distance (along the baseline) between two “tips” i and

j can be shown to equal ln(sij/⇤2). Together with the knowledge of the overall centre-of-

mass energy and uniformly sampled azimuthal decay angles �, this information is su�cient

to construct post-decay kinematics.

The Discrete QCD algorithm allows a simple method to produce groves with correct

rates. However, there are many ways to create the grove structures apart from the Discrete

QCD algorithm. One example is shown in the lower right part of Fig. 2. Since the grove

structure is contained in a triangular region smaller than the original background triangle,
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where  is the colour-charge factor, the two particle invariants 
,  is the no-branching probability,  is the strong 

coupling, and a particular choice of the functional form of  and  is 
called the phase space parameterisation. The parton shower 
master equation utilises the inclusive decay probability given by 
the eikonal interference pattern:

C
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where the momentum conservation condition implies the relation
. 

 
Current implementations of the veto-algorithm treat the variables  
and  as continuous degrees of freedom. Therefore, such 
algorithms are not suited for current quantum computers. 
Consequently, other algorithmic solutions to solving Eq. 1 are 
required for the implementation of quantum parton shower 
algorithms.  
 
Discrete QCD

sIK = sik + sij + sjk

t
ξ

As illustrated in Fig. (a) and (b), Discrete QCD abstracts the 
conventional approach to parton showers by:
1. Choosing a phase space parameterisation in terms of the 

gluon’s transverse momentum, such that, 
 
 
 
leads to the inclusive decay probability becoming, 
 
 
 
where  is an arbitrary mass scale.  
 
Within this phase space parameterisation, allowed dipole 
decays are constrained in a triangular region of phase space 
with height , as shown in Fig. (a).  
 
The emission of a gluon can be interpreted as “folding out” 
sampler triangles, as the allowed rapidity span for subsequent 
dipole decays is increased.  


2. Neglecting  splittings, and examining the affect of a 
transverse-momentum-dependent running coupling, 
 
 
 
leads to a simplified expression for the inclusive probability, 
 
 
 
highlighting an important result of [1]: interpreting the running-
coupling renormalisation group equation as gain-loss equation 
means that gluons within a rapidity range  act coherently as 
one “effective-gluon”.
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Figure 1: The phase space of e↵ective gluon emission is discrete, since 1 gluons within a
rapidity region �yg act coherently due to running-coupling e↵ects. The  (or equivalently
the k

2
?) dimension is also quantised, since 2 additional phase space folds opening due to

gluon emission are quantised in units of �yg. See main text for more details.

choice of an evolution variable t, and c) the choice of a momentum mapping sij , sjk $ t, ⇠

which determines the relations between pre-and post-decay momenta.

It is worth noting that all conventional state-of-the-art parton showers use slight vari-

ations of a single algorithm – the “veto algorithm” – to solve Eq. 2.2 numerically. This

algorithm treats the variables t and ⇠ as continuous degrees of freedom. It is thus unsuit-

able for (current) quantum devices. The following section will develop other algorithmic

solutions of Eq. 2.2, guided by keeping in mind the feasibility of NISQ devices.

2.1 Reinterpreting classical parton shower algorithms as random walks

This section extends the classical shower algorithm toolbox by performing several abstrac-

tions of the features of dipole showers. We are led to conclude that the showering process

can be described by creating and sampling from a fixed set of primitive fractal structures,

followed by a translation of the chosen primitive structure into scattering event momenta.

The first step has an elegant implementation on intermediate-scale quantum devices.

The first abstraction to consider is removing the independent treatment of decay prob-

ability and momentum-space integration by absorbing the non-uniform probability density

in Eq. 2.1 into the integration measure. This can be obtained by choosing a phase-space

parametrisation in terms of the gluon’s transverse momentum,
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where ⇤2 is an arbitrary mass scale. Within this phase space parametrisation, allowed

dipole decays are constrained to a triangular region of height L = ln(sIK/⇤2) in the (y, )-

plane, as illustrated by the left-hand panel of Fig. 1. Due to the colour charge of an emitted
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choice of an evolution variable t, and c) the choice of a momentum mapping sij , sjk $ t, ⇠

which determines the relations between pre-and post-decay momenta.

It is worth noting that all conventional state-of-the-art parton showers use slight vari-

ations of a single algorithm – the “veto algorithm” – to solve Eq. 2.2 numerically. This
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This section extends the classical shower algorithm toolbox by performing several abstrac-
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can be described by creating and sampling from a fixed set of primitive fractal structures,

followed by a translation of the chosen primitive structure into scattering event momenta.

The first step has an elegant implementation on intermediate-scale quantum devices.

The first abstraction to consider is removing the independent treatment of decay prob-

ability and momentum-space integration by absorbing the non-uniform probability density
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where ⇤2 is an arbitrary mass scale. Within this phase space parametrisation, allowed

dipole decays are constrained to a triangular region of height L = ln(sIK/⇤2) in the (y, )-

plane, as illustrated by the left-hand panel of Fig. 1. Due to the colour charge of an emitted
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which determines the relations between pre-and post-decay momenta.
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can be described by creating and sampling from a fixed set of primitive fractal structures,

followed by a translation of the chosen primitive structure into scattering event momenta.

The first step has an elegant implementation on intermediate-scale quantum devices.
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where ⇤2 is an arbitrary mass scale. Within this phase space parametrisation, allowed

dipole decays are constrained to a triangular region of height L = ln(sIK/⇤2) in the (y, )-

plane, as illustrated by the left-hand panel of Fig. 1. Due to the colour charge of an emitted

– 4 –

dP (q(pI)q̄(pK) ! q(pi)g(pj)q̄(pk)) '
dsij

sIK

dsjk

sIK
C
↵s

2⇡

2sIK
sijsjk

(1)

Fn(�n, tn, tc;O) = �(tn, tc)O(�n)

+

tnZ

tc

dtd⇠
d�

2⇡
C
↵s

2⇡

2sik(t, ⇠)

sij(t, ⇠)sjk(t, ⇠)
�(tn, t)Fn(�n+1, t, tc;O)

 = ln
⇣
k
2
?
⇤2

⌘
(2)

1

with (4)

gluon, the rapidity span for subsequent dipole decays (at lower ) is increased with respect

to the originally allowed range. This feature of QCD can be interpreted as “folding out”
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(6)

The quantisation of the phase space into multiples of  means 
the baseline of an additional triangle extends to positive  by , 
the height  at which the effect gluon is emitted is quantised into 
multiples of .  
 
Thus, we may model the parton shower by generating effective 
gluons at the centre of discrete tiles covering the phase-space 
triangle. These realisations form the basis of the “Discrete QCD 
algorithm” of [1].

δyg
y l/2

l
2δyg

Generating scattering 
events from groves

Grove Generation on a 
Quantum Device

The grove structures shown in Fig. (b) can be elegantly generated 
on a quantum device using the Quantum Walk with Memory 
framework.  
 
The walker moves in the total Hilbert space, constructed from 
tensor product of the coin space , the gluon space  and the 
baseline -space . A single step of the algorithm is 
schematically shown in Fig. (c) and is constructed from a 
maximum of five operations:

ℋC ℋg
λ ℋλ

1. The coin, , constructs an equal state on the coin register, such 
that the outcome of the coin gives an equal probability of 
selecting a tile in the slice


2. The Baseline operation, , shifts the walker along the base of 
the triangle at every step, as shown in Fig. (b).


3. The -shift operation, , controls from the coin and moves the 
walker correctly in  to represent the “folding out” of a new 
fold.


4. The gluon-shift operation, , controls from the coin and 
updates the shower content accordingly, if a gluon has been 
emitted.


5. The memory operation, , records the coin output and allows 
for conditional coin operations if needed.

C

B

λ S
ℋλ

S′ 

M

This step is then repeated for all slices in the parent fold, and then 
for all subsequent folds produced. At the end of the algorithm the 
gluon- and -registers are measured. From these, the grove 
structure can be reconstructed, and the baseline obtained to 
construct the kinematics.

λ

(c) Schematic of the quantum Discrete QCD parton shower algorithm circuit. The 
algorithm is a quantum walk with memory, constructed from maximum five operations per 
step: the coin operation , the baseline shift  , the  shift , the gluon shift , and the 
memory operation .

C B λ S S′ 

M

(d) Sample comparison of the Discrete QCD model and the Quantum Parton Shower to 
data taken at the LEP collider. The Quantum Parton Shower results are not corrected for 
errors in the qubit evaluations  

1. For each effective gluon  that has been emitted from a dipole 
, we read off the values of ,  and  from the grove. 


2. Generate a uniformly distributed azimuthal decay angle , and 
then employ the momentum mapping from [2] to produce post-
branching momenta  


j
IK sij sjk sIK

ϕ

The algorithm has been run on the ibm_algiers for 20,000 shots 
using the ibm_cloud. The results are shown in Fig. (c) and show 
good agreement with the classical Discrete QCD algorithm and the 
real life LEP data. Despite considerable amounts of noise in the 
uncorrected output from the quantum computer, the event 
generation is remarkably robust to quantum errors. 


We have synthesised realistic particle collision events by sampling 
parton shower configurations on a quantum device. As an 
application, we have compared the simulated data to data 
recorded at experiments at the Large Electron-Positron (LEP) 
collider, finding favourable agreement.  

This is the first time that the result of a quantum algorithm has been 
compared to “real-life” particle physics data. The quantum 
algorithm is constructed using the quantum walk framework and, 
consequently, is a compact algorithm with a short circuit depth, an 
important aspect to consider to obtain practical results from NISQ 
devices.
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Parton shower processes evolve high-energy few-particle states to 
low-energy multi-particle states by successively decaying particles 
into lower-energy decay products.  
 
Conventional, state-of-the-art parton shower algorithms generate 
physical multi-particle data through the decays of colour-anticolour 
dipoles.  
 
This is achieved by implementing a single algorithm, the “veto 
algorithm”, to numerically solve the parton shower master 
equation:

Each point in the tile  is equally likely, allowing for some 
degree of freedom for the second step above. We follow the 
method discussed in [1] and distribute the  and -values of the 
effective gluon in the highest and second-highest  tiles uniformly 
within the tile. This ensures a good model for the highest-  gluons.

(y, κ)

y κ
κ

κ

Abstract

Once the grove structure has been selected, event data can then 
be synthesised iterative from the baseline of the grove structure, 
starting from the highest-  gluons first:κ

Results and Summary
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