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Introduction

 Electron-induced effects in electronics are not as
well explored as those from ions, protons or
neutrons

 CLEAR facility is central to the investigation of these
effects:

« Can allow exploring electron-induced single-
event effects over a wider range of energy than
what can be achived in medical LINACSs.

« Can enable electron-induced displacement
damage studies and their comparison to
proton/neutron irradiations

* Quite diverse beam conditions achievable at
VESPER/THz with gun dark current or laser-
driven productions

« Characterization of electron-on-dump
radiative field to explore further testing
opportunities




Remarkable results from the past

SEU _gvl“);.(ﬁ
» First electron-induced SEUs from low-energy electrons e
 Medical LINACs limited to 20 MeV -
« CLEAR enabled testing up to 220 MeV
« Since then several tests:

« ESA Monitor (reference chip, 250 nm)

* More integrated technologies (Artix 28 nm)

« Tests from industrial partners (IROC and TRAD)
 Interest for Jovian environment space missions

(JUICE from ESA)
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Main take-aways (M. Tali):

« SEUs from high-energy electrons due to electro- and
photo-nuclear reactions
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Remarkable results from the past
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Latest R2E activities

SEE studies

« Study of flash effects in SRAM (effects caused by very high pulsed
fluxes)

» Characterization of highly integrated SRAMs (40-90 nm) of the R2E
inventory

* First observations of stuck bits in DRAM

Displacement damage (and ionizing dose) studies
« Determination of the electron hardness factor in silicon diodes
« DD and TID Effects on CMOS image sensors

Electron-on-dump studies
« Determination of the photon and HEH radiative field produced by
the dump due to the impinging electron beams

Dosimetry
» Liquid ion ionization chamber (not discussed here)
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Flash effects (V. Wyrwoll)

Gadlage 2015, IEEE TNS
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« SEE testing is performed at an accelerated rate; however, one has to make sure that each SEE is
due to the interaction of a single electron

» Tests with ESA monitor show that for the same fluence the number of SEUs may differ for diverse
beam conditions (e.g., bunch charge), which require further investigations.




SEUs In highly-integrated SRAMs (F. Castellani)
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« Different behaviors observed (ISSI 40 nm XS very similar to ESA monitor X vs. Higher cross-sections
for Cypress 65 and 90 nm)

« Large collected data helps claiming that typically 3-4 orders of magnitude differences wrt to HEP
are to be expected (though not proportional behavior with scaling)

« Beam conditions can generate unwanted row or column SEFIs
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Stuck bits in DRAM (D. Soderstrom)

Fluence (electrons/cm?)

Energy (MeV)

« Stuck bitis a hard SEE caused by a single particle strike (it is no longer possible to rewrite a different
value to the bit); it can be permanent or intermittent (latter related to DD effects)

« Typically not many statistics until device fails due to TID (but no dose rate dependence)

« Cross-sections similar to those of SEUs &a

« Study complemented with experiments in medical LINAC
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Displacement damage

Hardness factor D(Energy)/95 MeV mb
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Hardness Factor: kK =

104

« Measurement of eletron hardness factor were
made in the past. For 200 MeV electrons it was
determined to be 0.08

« First study performed measuring leakage
current on EP diodes




Displacement Damage

CLEAR enables displacement damage testing:
 Itis possible to reach fluences of 101°
e/cm?in half a day.
Similar levels with protons can be reached in
IRRAD (long shutdown)
 However, proton irradiation activates
devices much more than electron irradiation

Several diodes were irradiated in different beam
conditions (test linearity)

Measurements of leakage current and
correlation with fluence

Calibration done solely on facility log data
Possible further (i) TCT and (ii) TSC
measurements to determine (i) depleted voltage
and (ii) defects concetration
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Main take-aways
Hardness factor of 0.038
Linearity allows using these diodes for cross-

calibration purposes
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Displacement Damage (J. Kempf)
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Thorougher study of DD in electronics by means of additional devices:

« RadMon diode

« CMOS Image sensors from ISAE Supaero (also TID study for
Jovian environment)

Conventional photodiode
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Displacement Damage (J. Kempf)
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« RadMon is a well calibrated device in HEH environments used for radiation monitoring purposes at
CERN
« CMOS image sensors effects:
« Dark current
 Random Telegraph Signal (RTS)
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Displacement Damage (J. Kempf)

Table 4.5 — Comparison between radiochromae film

dosimetry and CLEAR dossmetry.

The Mean Position coluwmn shows the goussian center on the respective film.

Very strong efforts on dosimetry (comparison of CLEAR facility logs wrt radiochromic film

measurements)
Mixed results (sources of discrepancy not always clear)

Typical goal would be to have difference of £10%

Irradiation CLEAR Film Mean Pos. | Dist. center ‘ Rel. Gap
Unit 10" e/em® | x10"™ e/em” | mm x mm in mim in ‘i
W331 _ MIN 233 125 —0.5x 1.2 1.3 6.4
W33l MAXN 136 270 0x —1.7 1.7 36,7 E
RadMon 513 571 1.2 x —0.8 1.4 IS
DDD_MIN 1.76 1.63 \ \ 739
DDD_ MAX 3.24 3.06 \ \ N S
STD _TID  AMIN 43.5 34.0 —2.7Tx 23 3.0 i 21.8
PPD_TID_MIN 87.1 63.0 —3.7x 0.3 3.7 TP
STD _TID _MAX 303 340 0.7x 0.3 0.8 2.2 =
PPD_TID MAX 379 330 —02x1.2 1.2 12.9 =
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Displacement Damage (J. Kempf)

Depletion voltage variation with electron fluence during the RadMon irradiatis
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« RadMon only live measurement of damage (threshold voltage variation)

« Hardness factor for RadMon is 0.034 (good agreement with previous measurements on diodes)
« EP diodes used for cross-calibration have better agreement with film measurements

« Plenty of data yet to analyze (Defect spectroscopy, CMOS image sensor dark current and RTS)
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Electrons-on-dump (G. Lerner)

The experiment

Determination of the radiative field generated by the interaction
of a high-intensity electron beam with the dump.
Characterization done by measuring SEUs in SRAMs placed all
around the dump

Accomplished by directing high-intensity, small beams directly
on the dump without material in the beamline

Effect of thermal neutron studied thanks to B,C shielding
Comparison with FLUKA simulations thanks to the detailed
description of the dump

Scope

Determining influence of the dump neutrons and photons on
in-beam electron SEU measurements

In-nouse source of thermal and intermediate energy neutrons for
testing (higher fluxes than Am-Be)

Evaluation of possible R2E effects for equipment around dump
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Electrons-on-dump (G. Lerner)

Top view of HEH-eq fluence at beam height for 1014 primary electrons
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Electrons-on-dump (G. Lerner)

Top view of the R-factor at beam height (ratio of thermal neutron and HEH-eq fluence)
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Electrons-on-dump (G. Lerner)

Fluences vs horizontal coordinate behind the dump block (z=85cm)
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Main take-aways

« Dump front-side: relatively high and not so stable SEU rate (low thermal neutron contribution) and
strong dependency with the material in the beam

« Dump top-side: lower and more stable SEU rate (more contribution from thermal neutrons)

« Dump back-side in the center: relatively high and stable SEU rate, possible contribution of
photons (considering FLUKA predictions on neutron response)

« Dump back-side off-centered: similar to top-side.
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And more are coming...
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Conclusions

« CLEAR has been central to R2E activities over the last 5 years

* |t enabled studying key radiation effects that it was not possible to study elsewhere
« HEE SEU, SEL, stuck bits

* It enabled studying displacement damage effects in a short time and with low level of activation
« Determination of hardness factor
« Defect spectroscopy
» Appliactions to CMOS image sensors

* New uses derived from electron-on-dump measurements

« Dosimetry remains challenging
» Film calibrations could help

« Several collaborations with academic and industrial partners
» Slowed-down by contingent pandemic situation
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Outlook

» Electronics testing/qualification
« Displacement damage
* Most of the R&D completed
» Synergistic TID effects on top of DD to be investigated (one drawback with respect to proton
irradiation is the larger TID for same DD)
» Mixed-field generated from electrons-on-dump:
» Part of the R&D completed
» Further measurements with more sensitive devices (to measure energy deposition) are
foreseen to determine HEHeq flux and thermal neutron flux

« Radiation effects R&D
» Effects of pulsed electron/photon beams on electronics can be achieved at CLEAR
« FCC-ee R&D
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Thank you for
your attention!
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