R2E activities at CLEAR

Andrea Coronetti

With inputs from Rubén García Alía, Jean Kempf, Giuseppe Lerner, Vanessa Wyrwoll, Daniel Söderström, Florent Castellani

CLEAR Meeting - 16 Mar, 2021

Introduction

- Electron-induced effects in electronics are not as well explored as those from ions, protons or neutrons
- CLEAR facility is central to the investigation of these effects:
 - Can allow exploring electron-induced singleevent effects over a wider range of energy than what can be achived in medical LINACs.
 - Can enable electron-induced displacement damage studies and their comparison to proton/neutron irradiations
 - Quite diverse beam conditions achievable at VESPER/THz with gun dark current or laserdriven productions
 - Characterization of electron-on-dump radiative field to explore further testing opportunities

<u>clear</u>

Remarkable results from the past

SEU

- First electron-induced SEUs from low-energy electrons
- Medical LINACs limited to 20 MeV
- CLEAR enabled testing up to 220 MeV
- Since then several tests:
 - ESA Monitor (reference chip, 250 nm)
 - More integrated technologies (Artix 28 nm)
 - Tests from industrial partners (IROC and TRAD)
- Interest for Jovian environment space missions (JUICE from ESA)

Main take-aways (M. Tali):

- SEUs from high-energy electrons due to electro- and photo-nuclear reactions
- Happening in devices with rather large critical charge
- Higher HEE cross-sections wrt HEP cross-sections
 in more integrated technologies

Remarkable results from the past

SEL (M. Tali)

- Potentially destructive effect within a device
- Typically, it requires much higher deposited charge than SEU
- CLEAR enabled first ever observation and demonstration that HEE can trigger SEL in SRAM.

Latest R2E activities

SEE studies

- Study of flash effects in SRAM (effects caused by very high pulsed fluxes)
- Characterization of highly integrated SRAMs (40-90 nm) of the R2E inventory
- First observations of stuck bits in DRAM

Displacement damage (and ionizing dose) studies

- Determination of the **electron hardness factor** in silicon diodes
- DD and TID Effects on CMOS image sensors

Electron-on-dump studies

• Determination of the photon and HEH radiative field produced by the dump due to the impinging electron beams

Dosimetry

• Liquid ion ionization chamber (not discussed here)

Flash effects (V. Wyrwoll)

Gadlage 2015, IEEE TNS

- SEE testing is performed at an accelerated rate; however, one has to make sure that each SEE is due to the interaction of a single electron
- Tests with ESA monitor show that for the same fluence the number of SEUs may differ for diverse beam conditions (e.g., bunch charge), which require further investigations.

SEUs in highly-integrated SRAMs (F. Castellani)

- Different behaviors observed (ISSI 40 nm XS very similar to ESA monitor X vs. Higher cross-sections for Cypress 65 and 90 nm)
- Large collected data helps claiming that typically 3-4 orders of magnitude differences wrt to HEP are to be expected (though not proportional behavior with scaling)
- Beam conditions can generate unwanted row or column SEFIs

Stuck bits in DRAM (D. Söderström)

- Stuck bit is a hard SEE caused by a single particle strike (it is no longer possible to rewrite a different value to the bit); it can be permanent or intermittent (latter related to DD effects)
- Typically not many statistics until device fails due to TID (but no dose rate dependence)
- Cross-sections similar to those of SEUs
- Study complemented with experiments in medical LINAC

Displacement damage

Hardness Factor:
$$k = \frac{\alpha(e, 200 MeV)}{\alpha(n, 1 MeV)}$$

R2E

RADSAGA

- Measurement of eletron hardness factor were made in the past. For 200 MeV electrons it was determined to be 0.08
- First study performed measuring leakage current on EP diodes

Displacement Damage

- CLEAR enables displacement damage testing:
 - It is possible to reach fluences of 10¹⁶
 e/cm² in half a day.
- Similar levels with protons can be reached in IRRAD (long shutdown)
 - However, **proton irradiation activates** devices much more than electron irradiation
- Several diodes were irradiated in different beam conditions (test linearity)
- Measurements of leakage current and correlation with fluence
- Calibration done solely on facility log data
- Possible further (i) TCT and (ii) TSC measurements to determine (i) depleted voltage and (ii) defects concetration

Main take-aways Hardness factor of **0.038** Linearity allows using these diodes for crosscalibration purposes

Conventional photodiode

Thorougher study of DD in electronics by means of additional devices:

RadMon diode

R2E

RADSAGA

 CMOS Image sensors from ISAE Supaero (also TID study for Jovian environment)

- RadMon is a well calibrated device in HEH environments used for radiation monitoring purposes at CERN
- CMOS image sensors effects:
 - Dark current
 - Random Telegraph Signal (RTS)

Irradiation	CLEAR	\mathbf{Film}	Mean Pos.	Dist. center	Rel. Gap
Unit	$\times 10^{12} \ e/cm^{2}$	$\times 10^{12} \ e/cm^{2}$	mm \times mm	in mm	in %
W331_MIN	233	125	-0.5×1.2	1.3	46.4
W331_MAX	436	276	0×-1.7	1.7	36.7
RadMon	513	571	1.2 imes -0.8	1.4	11.3
DDD_MIN	1.76	1.63	λ	λ	7.39
DDD_MAX	3.24	3.06	N	\backslash	5.56
STD_TID_MIN	43.5	34.0	-2.7×2.3	3.5	21.8
PPD_TID_MIN	87.1	63.0	-3.7 imes 0.3	3.7	27.7
STD_TID_MAX	303	340	0.7 imes 0.3	0.8	12.2
PPD_TID_MAX	379	330	-0.2×1.2	1.2	12.9

Table 4.5 – Comparison between radiochromic film dosimetry and CLEAR dosimetry. The Mean Position column shows the gaussian center on the respective film.

- Very strong efforts on dosimetry (comparison of CLEAR facility logs wrt radiochromic film measurements)
- Mixed results (sources of discrepancy not always clear)
 - Typical **goal** would be to have difference of **±10%**

13

Irradiation	CLEAR Flu.	Film Flu.	\mathbf{DV}	\mathbf{LC}	LC Flu.
\mathbf{Unit}	$\times 10^{12} e/cm^2$	$\times 10^{12} \ e/cm^{2}$	in V	in µA	$\times 10^{12} \ e/cm^{2}$
$W331$ _MIN	233	125		1.35 ± 0.05	131 ± 5
$W331_MAX$	436	276	200	2.55 ± 0.03	247 ± 3

Table 5.1 – Results for W331 irradiations. The diode volume is 0.075 cm⁻³ and the damage factor for this technology is $\alpha = 1.38 \times 10^{-18} A/(e \cdot cm)$

No data yet on CMOS Image Sensors

- RadMon only live measurement of damage (threshold voltage variation)
- Hardness factor for RadMon is 0.034 (good agreement with previous measurements on diodes)
- EP diodes used for cross-calibration have better agreement with film measurements
- Plenty of data yet to analyze (Defect spectroscopy, CMOS image sensor dark current and RTS)

The experiment

- Determination of the radiative field generated by the interaction of a high-intensity electron beam with the dump.
- Characterization done by measuring SEUs in SRAMs placed all around the dump
- Accomplished by directing high-intensity, small beams directly on the dump without material in the beamline
- Effect of thermal neutron studied thanks to B₄C shielding
- Comparison with FLUKA simulations thanks to the detailed description of the dump

Scope

- Determining influence of the dump neutrons and photons on in-beam electron SEU measurements
- In-house source of thermal and intermediate energy neutrons for testing (higher fluxes than Am-Be)
- Evaluation of possible R2E effects for equipment around dump

R2E

RADSAGA

- Thanks to radiative field predictions from FLUKA one can predict the number of SEUs in the SRAM because the thermal, intermediate and high-energy neutron experimental cross-sections are known
- Photon cross-sections, however, are not known, but photon fluxes are very high

Fluences vs horizontal coordinate behind the dump block (z=85cm)

Main take-aways

- Dump front-side: relatively high and not so stable SEU rate (low thermal neutron contribution) and strong dependency with the material in the beam
- Dump top-side: lower and more stable SEU rate (more contribution from thermal neutrons)
- Dump back-side in the center: relatively high and stable SEU rate, possible contribution of photons (considering FLUKA predictions on neutron response)
- Dump back-side off-centered: similar to top-side.

Publications

- M. Tali et al., "High-Energy Electron-Induced SEUs and Jovian Environment Impact," in IEEE Transactions on Nuclear Science, vol. 64, no. 8, pp. 2016-2022, Aug. 2017.
- M. Tali et al., "Mechanisms of Electron-Induced Single-Event Upsets in Medical and Experimental Linacs," in IEEE Transactions on Nuclear Science, vol. 65, no. 8, pp. 1715-1723, Aug. 2018.
- M. Tali et al., "Mechanisms of Electron-Induced Single-Event Latchup," in IEEE Transactions on Nuclear Science, vol. 66, no. 1, pp. 437-443, Jan. 2019.
- M. Tali, "Single-Event Radiation Effects in Hardened and State-of-the-art Components for Space
- and High-Energy Accelerator Applications", PhD Thesis, University of Jyväskylä, Finland, 2019.
- A. Coronetti et al., "SEU Characterization of Commercial and Custom-designed SRAMs manufactured in 90 nm technology and below", in IEEE Radiation Effects Data Workshop, Santa Fe, NM, USA, 2020.
- D. Söderström et al., "Electron-induced Single Event Upsets and Stuck Bits in SDRAMs in the Jovian Environment", accepted for publication in IEEE Transactions on Nuclear Science, 2021.
- D. Poppinga et al., "VHEE beam dosimetry at CERN Linear Electron Accelerator for Research under ultra-high dose rate conditions", Biomedical Physics Express, vol. 7, no. 1, 2021.

And more are coming...

Conclusions

- CLEAR has been central to R2E activities over the last 5 years
 - It enabled studying key radiation effects that it was not possible to study elsewhere
 - HEE SEU, SEL, stuck bits
 - It enabled studying displacement damage effects in a short time and with low level of activation
 - Determination of hardness factor
 - Defect spectroscopy
 - Appliactions to CMOS image sensors
 - New uses derived from electron-on-dump measurements
- Dosimetry remains challenging
 - Film calibrations could help
- Several collaborations with academic and industrial partners
 - Slowed-down by contingent pandemic situation

Outlook

- Electronics testing/qualification
 - Displacement damage
 - Most of the R&D completed
 - Synergistic TID effects on top of DD to be investigated (one drawback with respect to proton irradiation is the larger TID for same DD)
 - Mixed-field generated from electrons-on-dump:
 - Part of the R&D completed
 - Further measurements with more sensitive devices (to measure energy deposition) are foreseen to determine HEHeq flux and thermal neutron flux
- Radiation effects R&D
 - Effects of pulsed electron/photon beams on electronics can be achieved at CLEAR
 - FCC-ee R&D

Thank you for your attention!

