<u>clear</u> CLEAR future running, resources, consolidation and upgrades

Update from last CLEAR review

- Resources, an update
- Outlook on future program
- Possible upgrades consolidation
- Mode of operation in the next years
- Some worries...

From the original <u>CLEAR proposal</u>

The running cost of the new facility can be estimated at about 700 kCHF/year (including M to P), with the following distribution:

Cost-item	kCHF/year
RF (including M to P)	240
Vacuum	20
Power converters	10
Cabling, diagnostics, controls (including M to P)	70
Laser cathodes (including M to P)	110
Personnel for operation maintenance and installation support (M to P)	220
Contingency, travels, visitors support	30
Total	700

Actual expenses (kCHF)

2017 2018

RF	340	253
Vacuum	18	16
Power Converters	2	1
Cabling, diags, controls	10	80
Laser/cathodes	40	75
Personnel	200	255
Travels, etc.	5	5

From the original <u>CLEAR proposal</u>

The running cost of the new facility can be estimated at about 700 kCHF/year (including M to P), with the following distribution:

Cost-item	kCHF/year
RF (including M to P)	240
Vacuum	20
Power converters	10
Cabling, diagnostics, controls (including M to P)	70
Laser cathodes (including M to P)	110
Personnel for operation maintenance and installation support (M to P)	220
Contingency, travels, visitors support	30
Total	700

Actual expenses (kCHF)

2019 2020

RF	175	56
Vacuum	15	8
Power Converters	0	0
Cabling, diags, controls	67	71
Laser/cathodes	78	48
Personnel	295	265
Travels, etc.	9	1

TOTAL 639 449

Present Status:

From the original <u>CLEAR proposal</u>

The personnel needed for maintenance and operation support is 3.7 FTE/year for staff, 1 FTE/year for fellows (two fellows at 50%) and about 3.5 FTE/year for students/PJAS/FSUs (cost included in material budget above). The rough distribution of staff resources among the CERN groups is as follows:

Group/section	<i>FTE/year</i>
BE/ABP	0.5
BE/BI	0.2
BE/OP	0.5
BE/RF	1
EN/STI	0.5
TE/EPC	0.5
TE/VSC	0.5
Total	3.7

Group	FTE/year
BE/ABP	0.5
BE/BI	0.2
BE/OP	0
BE/RF	1.2
BE/CO	0.2
EN/STI	0.8
EN/CV	0.1
EN/SMM	0.1
TE/VSC	0.5
TE/EPC	0.1
TOTAL	3.4 (<mark>3.7</mark>)

From APT Assumed

Apart from staff, CLEAR manpower is currently covered by 2.5 FTE/year for Fellows and about 3.5 FTE/year for students/PJAS/VISC/FSUs (cost included in material budget).

Present Status:

From the original <u>CLEAR proposal</u>

The personnel needed for maintenance and operation support is 3.7 FTE/year for staff, 1 FTE/year for fellows (two fellows at 50%) and about 3.5 FTE/year for students/PJAS/FSUs (cost included in material budget above). The rough distribution of staff resources among the CERN groups is as follows:

Group/section	<i>FTE/year</i>
BE/ABP	0.5
BE/BI	0.2
BE/OP	0.5
BE/RF	1
EN/STI	0.5
TE/EPC	0.5
TE/VSC	0.5
Total	3.7

Group	FTE/year
BE/ABP	0.6
SY/BI	0.15
BE/OP	0
SY/RF	1.25
BE/CSS	0.2
SY/STI	0.9
EN/CV	0
en/smm	0
TE/VSC	0.25
TE/EPC	0
TOTAL	3.35

From APT

Apart from staff, CLEAR manpower is currently covered by 0.5 FTE/year for Fellows and about 4 FTE/year for students/PJAS/VISC/FSUs (cost included in material budget).

- Initial request (and initial allocation):
 - 800 kCHF/year = 700 kCHF/year "material" + 1 GET Fellow on average
- Present allocation:
 - 750 790 kCHF/year

Target figures M available on CERN ROOT :

		2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	Grand Total
CERN_ROOT	CLR-OPE	752	791	791	791	791	791	791	791	791	791	7,871
	CERN_ROOT Total	752	791	791	791	791	791	791	791	791	791	7,871
	Grand Total	752	791	791	791	791	791	791	791	791	791	7,871

• Should be OK, leaving space for one fellow at all times – but tight.

2021 Beam Time Requests

Received

- 1. Optical Beam Loss Monitor
- Gaseous real time dosimeter for FLASH
- AWAKE Cherenkov BPM 3.
- WakeFieldMonitors WF kicks
- Active Plasma Lens
- RaDFOS fiber optics dosimeter
- Micro-Beam Position Monitor IRRAD
- Radiation damage in SDRAMs 8.
- Neutron Dump Experiment 9.
- 10. Dosimetry for medical and space applic.
- 11. Chromox screen test
- 12. Dosimetry FLUKA neutron benchmark

Expected (extensions)

1	E	0	S

- 2. CLIC Cavity BPMs
- Cherenkov Plasmonics
- AWAKE screens in Rb
- 5. Soft X-Ray Cherenkov
- 6. CHUV FLASH
- 7. ...

New proposals under discussion

- 1. scintillator detector for NA62
- De Broglie internal clock
- HEPD-02 detector (CSES-02 satellite)

B. Salvachua	SY/BI
Y. Arnaud	PSC Grenoble/CNRS/IN2P3
E. Senes	SY/BI
K. Sjobak	U. of Oslo
K. Sjobak	U. of Oslo
F. Fienga	INFN, U. of Sannio, CNR
G. Pezzullo	EP/DT
D. Söderstörm	U. of Jyväskylä
R. Garcia Alia	SY/STI
V. Wyroll	CERN/U.Oldenburg/PTW
H. Gjersdal	U. of Oslo
M. Tisi	Helmholtz Zentrum München

Main issue:

Access on site to external users (Covid-19 situation)

We started discussing with external partners (e.g., CHUV) on the possibility to organize exp. material delivery and remotely supervised installation and data taking.

S. Mazzoni	SY/BI
A. Lyapin	RHUL/CERN
T. Lefevre	SY/BI
J. Pucek	
A. Kubankin	Belgorod
M.C. Vozenin	CHŪV
1	

T. L

Interesting to extend scope and parameter range (low intensities)

Operation Mode – new approval procedure and follow-up clear

- We are putting in place a new approval procedure through EDMS (Gerry's talk)
 - Should help to keep track of requests in an easier way
 - Will provide easier access to documentation, and better tracking
 - Ensures all stakeholders are informed •

 We have also prepared a new follow-up form for users, to be filledup after an experiment has taken place

clear

Experiment Review Form

Requested

Page 1 of 2

A. EXPERIMENTER DETAILS

В.

C.

parameters achieved in reality

Bunch charge / length Number of bunches time structure Beam energy / energy spread

A .	Principal Investigator:		Cr	Critical parameters stability requirem (e.g. orbit, beam charge	
	- Contact Information (phone/email):				
	Experiment Members:		D.	SUMMARY	
	Collaborating Institutions:		Give	a detailed sumr	
	Funding Source (optional): _			 Summary of Daily summ Were the statement 	
	Date of Operation:			 Problems er Potential im 	
	Total Installation Time: Total Beam Time:		E.	FUTURE W	
B.	EXPERIMENT GOALS	montel apple in the beem time request notice if they		 The details What addition Preliminary 	
wen	e achieved or not.	nental goals in the beam time request, noting it they	F.	POSSIBILI	
c.	BEAM PARAMETERS				
Plas	ase provide as much detail as possible	on the beam parameters requested and the beam			

Provided

clear

Transverse Twiss	
arameters (β; α; ε) or	
beam size/shape:	
	-

and nents size

OF OPERATION

nary of the experimental program, including the following

- the installation procedure
- ary of operation
- ted goals achieved
- countered provements to operation

ORK AT CLEAR

ny future work foreseen at CLEAR, including the following as appropriate

- of the foreseen work
- onal requirements would be needed for this work
- dates for this work

Page 2 of 2

TY OF PUBLICATION

- Main themes:
 - VHEE/FLASH activities very active, essential for CERN-CHUV FLASH collaboration
 - Beam Diagnostics R&D not just for CLIC/AWAKE
 - Irradiation extensive program outlined by Andrea
 - Future accelerators now CLIC (ILC) and AWAKE (see Steinar's and Edda's talks)
 - continuation of Plasma Cell activities, possibly toward acceleration tests? (potential collaboration with SPARC – INFN/LNF)
 - Extend to FCC-ee?
- Some activities not fully followed-up at present
 - THz power generation & use
 - Impedance measurements with beam
- Keep opportunities for other users from CERN and outside...

- Main points of present/future program on VHEE/FLASH
 - Demonstrate FLASH sparing effect at high energies (> 50 MeV)
 - Develop real time dosimetry at high doses
 - Precise dose deposition studies for VHEE (e.g., nonuniformities...)
 - Focusing and steering for VHEE and VHEE/FLASH
 - Understand influence of beam time structure on FLASH effect
 - Understand dependence from energy on FLASH effect
 - Fractioning with VHEE/FLASH
 - Clarify biological mechanisms (DNA, oxygen depletion)
 - Comparison with proton and gamma FLASH
 - Complement CERN-CHUV collaboration on future FLASH facility

- Discussion ongoing with M. Vretenar to include CLEAR in the next EU call for TransNational Access (TNA) funds
- Aim: 350 kEuros over 4 years
- Mainly support for visitors possibly including operation support by collaborators
- CERN does not charge beam time, but some potential for improvements of beam lines
- Include potential access for external users to X-Boxes, or S-band testing

Will keep exploring possibilities of external funding – e.g., for VHEE/FLASH

We recently restarted studies on an additional dog-leg beam line (L. Dyks)

Some of the available quads

- Converging on a simple achromat solution, branching off at VESPER location, angle ~ 20 deg
- Should preserve bunch length or allow for moderate compression (sub-ps bunches as a requirement)
- Re-use CTF3 dipole and quads, existing power supplies...
- If a solution is found, we will produce a precise costing

- Described in Edda's talk
- Commissioned in CTF2 area from 2021 to 2022
- Eventually moved to AWAKE for second run in 2026
- Two options for CLEAR:
 - Move after commissioning to CLEAR, use in 2023-2025
 - Use after commissioning in CTF2 as independent beamline
- Resources in CLIC/AWAKE CLEAR resources will eventually cover operation and move to CLEAR

AWAKE 150 MeV									
Schedule	2020	2021	2022	2023	2024	2025	2026	2027	2028
Final design									
Mechanical design/Integration									
Procurement									
Installation									
Commissioning									
Start experiments									
CTF2 prototype/CLEAR 60 MeV									
Schedule	2020	2021	2022	2023	2024	2025	2026		
Final design									
Mechanical design									
Procurement									
Installation									
Commissioning									
Start experiments in CTF2									
Move to CLEAR									
Exp in CEAR									
★									

Installation in CLEAR

CLEAR Review, 16th March 2021

- Laser: main consolidation carried out should explore potential for an higher reprate option (interest for FLASH experiment)
- Vacuum most of the needed consolidation has been already carried out
- Controls some done in past years what remains is still to be evaluated
- Modulator/Klystrons we have a few spares, but not enough for 5 years – issue: distribute corresponding spending evenly

<u>clear</u> Future mode of operation and some worries

CERN

- Keep operation mode similar to the present one > maintain operation flexibility
- While having a more formal beam time allocation process (to cope with more requests?)
 - Risk of loading too much the operation team.
 - If not able to satisfy all requests > need scientific evaluation.
 - Periodic review by Scientific Committee?
 - Keep reserve beam time available for pre-approval tests?

> suggestions welcome

- Small operation team, made-up by not permanent staff > risk to fall under the critical mass and/or loose continuity.
- Some vulnerable point in technical support expertise (e.g., cathode production and, to a lower extent, laser.)
- Ensure continuity for retiring staff > e.g., Experimental Safety Officer...
- Technical support is now adequate, but only marginally

Thanks for your attention!

