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Minimal warm inflation︸ ︷︷ ︸
I many models

I simplest case: scalar field ϕ = ϕ(t) , ~∇ϕ = 0

potential V (ϕ) = 1
2m

2ϕ2

reheatinginflation
t

φ(t)
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Minimal warm inflation︸ ︷︷ ︸
I scalar field ϕ = ϕ(t) , ~∇ϕ = 0

I medium with increasing temperature Ṫ > 0 , T (0) ∼ 0

I friction transfer energy from ϕ to medium

⇒ many time scales︸ ︷︷ ︸
thermal, vacuum, ...

to take care of

I How is ϕ coupled to the heat bath?
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Minimal warm inflation︸ ︷︷ ︸
impose symmetry ⇒ ϕ pseudoscalar

⇒ Axion-like coupling: medium thermalizes

L =
1

2

(
∂µϕ∂µϕ−m2ϕ2

)
− ϕJ + Lbath (1)

J =
g 2

fa

εµνρσF c
µνF

c
ρσ

64π2
, g YM coupling, α =

g 2

4π

fa decay constant

c ∈ {1, . . . ,N2
c − 1}
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Equivalence principle
General linear response argument
Fourier transform

L =
1

2

(
∂µϕ∂µϕ−m2ϕ2

)
− ϕJ + Lbath (1)

Procedure:

I local Minkowskian frame

I covariant field equation

I expanding FLRW universe
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L =
1

2

(
∂µϕ∂µϕ−m2ϕ2

)
− ϕJ + Lbath (1)

Procedure:

I local Minkowskian frame

↓
ϕ̈+ m2ϕ+ 〈J(t)〉︸ ︷︷ ︸

?

= 0
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Equivalence principle
General linear response argument
Fourier transform

〈J(t)〉 ?

Hamiltonian: Ĥ = Ĥbath + ϕĴ
Heat bath density matrix: ρ̂(t) , [Ĥbath, ρ̂(0)] = 0

i∂t ρ̂(t) = [Ĥ(t), ρ̂(t)]

⇒ 〈Ĵ(t)〉 = −
∫ t

0
dt ′ϕ(t ′)CR(t − t ′) +O(J3) (2)
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Fourier transform

eomy ϕ̈(t) + m2ϕ(t)−
∫ ∞

0
dt ′CR(t − t ′)ϕ(t ′) = 0 , t ≥ 0

↓
ω

↓

ϕ(t)θ(t) =

∫ ∞
−∞

dω

2π

e−iωt

ω2 −m2 + CR(ω)
G[ω, ϕ(n)(0)] (3)
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ϕ(t)θ(t) =

∫ ∞
−∞

dω

2π

e−iωt

ω2 −m2 + CR(ω)
G[ω, ϕ(n)(0)] (3)

I t � 0

I deform integration contour into H−

I compute poles iteratively from ω = ±m

⇒ ϕ̈+ Υϕ̇+ m2
Tϕ

2 ≈ 0 (4)

Υ ≈ ImCR(m)
m , m2

T ≈ m2 − ReCR(m)
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UV
IR

CR(ω) ?

I ω � πT : vacuum part dominates1 ←
I ω ∼ πT : thermal modifications2

I ω ∼ gT : plasma excitations and Debye screening2

I ω � α2T : non-perturbative dynamics3 ←

CR ≈ C vac

R
+ C IR

R
(5)

1
S. Caron-Huot, Phys. Rev. D 79 (2009) 125009 [0903.3958]

2
M. Laine, A. Vuorinen and Y. Zhu, JHEP 09 (2011) 084 [1108.1259]

3
G. D. Moore and M. Tassler, JHEP 02 (2011) 105 [1011.1167]
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A. L. Kataev, N. V. Krasnikov and A. A. Pivovarov, Nucl. Phys. B. 490 (1997) 505 (E) [hep-ph/9612326] ,

M. Laine, M. Vepsäläinen and A. Vuorinen, JHEP 10 (2010) 010 [1008.3263] :

ImC vac
R (ω) ∝ α2ω4

f 2
a

(6)

I Decay width of ϕ → gg

I ReC vac
R (ω) : mass correction
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UV
IR

C IR
R (ω) ' − ω∆ΥIR

ω + i∆
(7)

I ω → 0 : G. D. Moore and M. Tassler, JHEP 02 (2011) 105 [1011.1167]

ImC IR
R (ω) −→ transport coefficient ,

ΥIR ←→ sphaleron rate

I ω ∼ α2T : Lorentzian shape (?)

∆ ≈ cα2T YM thermalization rate , c ' 10
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CR y ϕ̈+ Υϕ̇+ m2
Tϕ

2 ≈ 0 (4)

M. Laine and S. Procacci, JCAP06 (2021) 031 [2102.09913v2]
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Figure 1: Left: the variables ϕ/mPl, T/(10−4 mPl), and N/50 (number of e-folds), for the parameters

in eq. (6.1), as a function of t/H−1
ref , where Href is from eq. (6.3). Right: the same for eq. (6.2).

In both cases eq. (2.1) is rather marginally satisfied, and this turns out to be essential for

the dynamics: if fa is further decreased, the vacuum part of CR starts to dominate but the

framework becomes theoretically inconsistent; if fa is increased, the effects from CR disappear,

and we return to usual (cold) chaotic inflation.

As far as phenomenology goes, the amplitude of scalar perturbations, As, can always be

chosen to match the observed value, by tuning m/mPl. Currently the most stringent test

comes from whether the spectral tilt, ns, matches the Planck result [32].6 A challenge here is

that as the solution may interpolate between the weak and strong regimes, the corresponding

predictions need to be adopted from numerical work, which is typically specific to a particular

model or parametric form of Υ (cf., e.g., refs. [33–36] and references therein). In any case,

according to ref. [17], the weak regime could lead to a phenomenologically viable value of

ns, whereas ref. [14] found that the strong regime only works by adding a constant to the

potential, i.e. by considering hybrid rather than chaotic inflation. Here we have added no

constant, and suspect that our benchmark points do not produce the correct ns. Nevertheless,

6As far as other predictions go, the tensor-to-scalar ratio r is argued to be small in warm inflation, as

scalar perturbations are increased by thermal fluctuations but tensor perturbations supposedly not, even if

we note that thermal fluctuations of a weakly coupled scalar field do yield a substantial contribution to the

gravitational wave production rate [37]. Non-Gaussianities are argued to offer for a characteristic signature of

warm inflation [38]. However, for both of these observables measurements only give upper bounds for now.

11

m = 7 × 10−7mpl m = 7 × 10−7mpl

fa = 8 × 10−7mpl fa = 2 × 10−7mpl

ϕ(0) = 4mpl ϕ(0) = 2mpl
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Conclusions:

I previously4: Υ ∼ T x , x ∈ R+

I we find Υ ≈ Υvac︸ ︷︷ ︸
∼const.

+ ΥIR︸︷︷︸
∼T 3

T/Href

Υ/Href

Υnaive/Href

0 100 200 300

10-8

10-4

100

t/Href
-1

weak regime

Outlook:

I thermally → estimate ∆

I phenomenologically → observational constraints (ns , A, r , ...)

4
see e.g.

K. V. Berghaus, P. W. Graham and D. E. Kaplan, JCAP03 (2020) 034 [1910.07525]
K. V. Berghaus and T. Karwal, Phys. Rev. D 101 (2020) 083537 [1911.06281]
D. Suratna, G. Goswami and C. Krishnan Phys. Rev. D 101 (2020) 103529 [1911.00323]
Y. Reyimuaji and X. Zhang, JCAP04 (2021) 077 [2012.07329]
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