Lorem Ipsum Dolor

Jenkins Pipelines for LCG i

Motivation

* Jenkins Pipeline is a suite of plugins that supports implementing and integrating continuous
integration and delivery pipelines into Jenkins

* The jenkinsfile contains all the parameters, stages, steps to define the pipeline and is stored together
with the source code of the project

“ The Jenkins for the LCG nightlies and releases suffered from the following problems

* Many independent jobs to implement the different stages (build, upload binaries, cvimfs install, test,
etc.) needed be maintained (using a GUI), passing parameters between jobs has been a pain, several
levels of scripts, ...

* Not possible to mix docker and non-docker elements in a configuration matrix (ARM, MacQOS,
GPUs,...)

+ Keeping in sync several GIT repositories together with the Jenkins job configurations (not in GIT)
using the Web GUI is complex and error prone

What s a Jenkins Pipeline?

“ A Jenkinsfile can be written using two types of
syntax: Declarative and Scripted

Jenkins Pipeline

“ Declarative Pipeline is a more recent feature of

Jenkins Pipeline which provides richer syntactical
features over Scripted Pipeline syntax, and is designed
to make writing and reading Pipeline code easier

pipeline {

* Jenkins job starts by getting the Jenkinsfile from agent any
stages {
the repository stage(*Stage 1) {
echo 'Hello world!'’
: }
« It learns about the parameters, steps, options,)

. . o }
instructions from the file itself }

Jenkins Pipeline Concepts

« Pipeline: This is the fundamental block to the syntax of a declarative pipeline. It is
a user-defined framework that includes all the processes like create, check, deploy,
etc.

« Agent: It instructs Jenkins to assign the builds to an executor. Can be global or
different for every stage. Several types of agents: Any, None, Label, Docker

« Stage: A stage block contains a series of steps in a pipeline. That is, the build, test,
and deploy processes all come together in a stage. Generally, a stage block is used
to visualize the Jenkins pipeline process.

« Step: A step is nothing but a single task that executes a specific process at a defined
time. A pipeline involves a series of steps. Groovy can be used to write the scripts.

Creating Jenkins Pipeline Project

* Pipeline is a type of jenkins project (if the Pipeline plugin is available in the
instance)

':-' . "i‘:ﬂ' Pipeline

Orchestrates long-running activities that can span multiple build agents. Suitable for building pipelines (formerly known as
workflows) and/or organizing complex activities that do not easily fit in free-style job type.

* Write the directly the pipeline script or indicate the repository where the
jenkinsfile is Pieiine

Definition Pipeline script from SCM
SCM [None ¢] @
Script Path Jenkinsfile o
Lightweight checkout @

Pipeline Syntax

+ That's all

With Jenkins Blue Ocean is supposed to be even easier!
5

LCGG Nightlies use case

* Goal: Put all the LCG nightlies in only two Jenkins jobs

* One with the full pipeline for a single version (dev3, devARM, etc.) and
platform (compiler, architecture,.etc.) for all the steps (build, install, test, etc.)

* One with a full configuration matrix that triggers N full pipeline jobs on
schedule

Full Pipeline for a single Version/Platform

* Mixing docker and non-docker
build and tests

“ Stages are executed on certain
conditions (logical expressions)

« Installation in CVMFS is slightly
different for MacOS and Linux

+ Pre-installation to fix RPATHSs on
MacOS

}

/

~pipeline {

/---Global Parame T I e e e e e e e e e s e . e . e . e . :

parameters 1~

}

onment {-

stage('InDocker') {-

}
stage('InBareMetal') {-

stage('TestInDocker') {-

¥
stage('TestInBareMetal') {-

¥

Global Parameters

//===GLobal : Paramete s —— e e e e e e e e e e e e e e e e e e e
parameters {

string(name: 'LCG_VERSION', defaultValue: 'devdcuda', description: 'LCG stack version to build')

choice(name: '"COMPILER', choices: ['gcc8', 'gcc9', 'gccld', 'clang8', 'clangl@', 'native'l])

choice(name: '"BUILDTYPE', choices: ['Release', 'Debug'])

choice(name: 'LABEL"', choices: ['centos7', 'centos8', 'slc6', 'macos1015'])

string(name: 'LCG_INSTALL_PREFIX', defaultValue: '/cvmfs/sft.cern.ch/lcg/latest:/cvmfs/sft.cern.ch/lcg/releases', description: 'Location to
look for already installed packages matching version and hash value. Leave blank for full rebuilds')

string(name: '"LCG_ADDITIONAL_REPOS', defaultValue: 'http://lcgpackages.web.cern.ch/lcgpackages/tarFiles/latest"’, description: 'Additional
binary repository"')

string(name: "LCG_EXTRA_OPTIONS', defaultValue: '-DLCG_SOURCE_INSTALL=0FF;-DLCG_TARBALL_INSTALL=0ON', description: 'Additional
configuration options to be added to the cmake command')

string(name: '"LCG_IGNORE', defaultValue: '', description: 'Packages already installed in LCG_INSTALL_PREFIX to be ignored (i.e.
full rebuild is required). The list is \'single space\' separated.')

booleanParam(name: 'USE_BINARIES', defaultValue: true, description: 'Use binaries in repositories')

string(name: '"VERSION', defaultValue: 'master', description: 'LCGCMake branch to use for the build (master, experimental, ...)')
string(name: '"TARGET ', defaultValue: 'all', description: 'Target to buuld (all, <package-name>, ...)"')

choice(name: 'BUILDMODE"', choices: ['nightly', 'release'], description: 'CDash mode')

booleanParam(name: 'CLEAN_INSTALLDIR', defaultValue: false, description: 'Instruct to clean the install directory before bulding')
booleanParam(name: 'CVMFS_INSTALL', defaultValue: true, description: '')

booleanParam(name: 'RUN_TESTS', defaultValue: true, description: '')

booleanParam(name: 'VIEWS CREATION', defaultValue: true, description: '')

string(name: 'CVMFS_DEPLOYER"', defaultValue: 'cvmfs-sft-nightlies', description: 'CVMFS publisher node label')

Pipeline Icg_nightly_pipeline

This build requires parameters:

Starting a Parametrised job = =

. BUILDTYPE

LABEL (centos7 %)

DOCKER_LABEL

docker-host

Label for the the nodes able to launch docker images

ARCHITECTURE

Complement of the architecture (instruction set)

LCG_INSTALL_PREFIX Jcvmfs/sft.cern.ch/lcg/latest:/cvmfs/sft.cern.ch/lcg/releases

‘0‘ W 2 2 2 Location to look for already installed packages matching version and hash value. Leave blank for full rebuilds
s ¢ Cdll tnen rlgger d DUl USIHg

LCG_ADDITIONAL_REPOS https://lcgpackages.web.cern.ch/tarFiles/latest

Additional binary repository

the usual]enkins GUI panels LCG_EXTRAOPTIONS | _p) cG_SOURCE_INSTALL=OFF;-DLCG_TARBALL_INSTALL=ON

Additional configuration options to be added to the cmake command

LCG_IGNORE

‘:‘ It re a d S the Je nkin S ﬁl e and Offers all :?%;g;}gf}:j::sm LCG_INSTALL_PREFIX to be ignored (i.e. full rebuild is required). The list is 'single space’ separated.
parameters to the User

TARGET all

Target to buuld (all, , ...)

BUILDMODE

CDash mode

+ Parameter definition and default Eot v oty o e

values stays in the Jenkinsfile

CVMFS_DEPLOYER cvmfs-sft-nightlies

CVMFS publisher node label
BRANCH

master

LCGCMake branch to use for the build (master, experimental, ...)

Docker Integration

* Docker builtin agent
ready to be used

+ host and container
share the same
Workspace

* Support for
kubernetes is also
available :-)

stage('InDocker') {

when {
beforeAgent true
expression { params.LABEL.matches('centos.*|ubuntu.x"') }
}
agent {
docker {
image '"gitlab-registry.cern.ch/sft/docker/$LABEL"
label 'docker—host'
args """—=v /cvmfs:/cvmfs
—-v /ccache: /ccache
-v /ec:/ec
——hostname ${LABEL}-docker

10

Build and Copy Stages

stages {
stage('Build') {
* Any shell command can = | st «
script {-
be used b
source lcgcmake/jenkins/jk-setup.sh $BUILDTYPE $COMPILER
: env | sort | sed 's/:/:? /9" | tr '?2" '\n'
o Some Varlables Can be ctest -V -DCTEST_LABELS=$CTEST_LABELS -S 1lcgcmake/jenkins/lcgcmake-build.cmake
o script {-
updated after the build :
}
and transferred to . |
stage('CopyToE0S') {
steps {
subsequent stages g
export PLATFORM=${PLATFORM}
set +X
o e.g. BUILDHOST, source /cvmfs/sft.cern.ch/lcg/releases/LCG_98/xrootd/4.12.3/${PLATFORM}/xrootd-env.sh
set —-X
lcgcmake/jenkins/copytoEQ0S. sh
CTEST—TAG/ CVMFS lcgcmake/jenkins/copytolLatest.sh
revision, ... }

iFlL

T'est Stages

steps {

KX sh-label: 'wait-for-cvmfs',
Test can be run on raots
different nodes

export PLATFORM=${PLATFORM}
lcgcmake/jenkins/wait_for_cvmfs.sh

dir('lcgtest') {
git branch: 'master’,
url: "https://gitlab.cern.ch/sft/lcgtest.git’

+ Variables and

parameters are)

- - h label: 'test-with-vi ',
shared within all the 7 e o

: . export PLATFORM=${PLATFORM}
plpehne export BUILDHOSTNAME=${BUILDHOSTNAME}
export IGNORE_PYTHON_MODULE=\"${IGNORE_PYTHON_MODULE}\"

» F -l-t t [-d test_build] && rm -rf test_build
3 dacllitates mkdir —-p test_build/Testing

. . echo "${CTEST_TAG}" > test_build/Testing/TAG
(:()11111111111‘:EItl()Il source /cvmfs/sft.cern.ch/lcg/views/$LCG_VERSION/latest/$PLATFORM/setup.sh

between Stages ctest -V -DCTEST_LABELS=".x" -S lcgcmake/jenkins/lcgtest-test.cmake

Pipeline Stage View

Stage View
Environment

Average stage times: 13s
(Average full run time: ~4h "'

#5239 devgeantv-centos/-gcc9-opt

684ms

719ms

17s

3s

47s

5s

2s

42s

13s

1s

InDocker

4s

[l

1s

23s

2s

2s

1s

2s

2s

1s

1s

1s

Build

52min 49s

Fy——

27s

11Imin 51s

39min 16s

Tmin 32s

43s

1h Tmin

2h 7min

2h Omin

1h 39min

Th 5min

CopyToEOS

17s

Typ—

2s

6s

1s

4s

2s

20s

27s

55s

32s

14s

InBareMetal

Oms

Fov—

Build

Oms

wg—

CopyToEOS

Oms

-

MacPreinstall

Oms

e

CVMFSiInstall

3h 16min

—p—

3h 12min

3h 9min

3h 14min

3h 5min

3h 5min

3h 16min

3h 21min

3h 28min

3h 38min

3h 15min

TestinDocker

1min 11s

ey

40s

Tmin 6s

20s

3min 9s

2min 42s

3s

Tmin 33s

Tmin Os

1s

WaitForCVMFS

6min 3s

=

10min 13s

5min 7s

5min 7s

5min 7s

5min 7s

5min 7s

5min 7s

5min 7s

10min 13s

TestWithViews TestShell TestPythonimport

Tmin 16s 8s 3min 53s

36s 10s 26s

43s 9s 29s

35s 8s 26s

33s 9s 23s

42s 10s 26s
1min 25s 37ms 47ms

failed failed failed

3min 12s 4s 12min 3s
3min 4s 14s 10min 34s
Tmin 19s 14s 11min 12s

TestinBareMetal

21s

—

42s

25ms

WaitForCVMFS TestWithViews TestShell TestPythonimport
Oms Oms Oms Oms
10min 13s 1min 49s 10s 6min 41s
33ms 35ms 35ms 35ms
failed failed failed failed

13

Nightly Configuration Matrix

* Single matrix for all LCG nightlies

+ Global view

+ No details on how to build / test
each cell

“ Spawn N pipeline jobs

Configuration Matrix

dev3 dev3python2 devd dev4python2 dev3cuda| devd4cuda devARM | devBE devAdePT

centos7 |native |Release
Debug
gcc8 Release Q Q Q Q
Debug | < < <
gcc9 | Release Q Q Q Q
Debug | (J)))
gcc10 | Release | () - - -
Debug | - - -
clang10 Release | (J - - -
Debug | J - < -
centos8 |native |Release
Debug
gcc8 Release
Debug
gcc9 Release
Debug
gcc10 | Release Q Q
Debug |J -
clang10 Release
Debug

14

Release Pipeline

* Implemented a ‘release’ pipeline with slightly different stages (publish
LCGinfo DB, create and publish RPMs, testing RPMs, etc.)

* The nightly and release pipeline ragel Emirsment’)

agent { label "$DOCKER_LABEL" }
steps {

[] []
share the same set of instructions
lcg = load 'lcgcmake/jenkins/Jenkinsfunctions.groovy'
by
b

« File with Groovy functions and variables ,

stage('Build') {
steps {
script {
Lcg.buildPackages()
¥
b
b
|

15

Current LCG Status

* LCG Nightlies are done using the Jenkins Pipelines on a mix of docker

images (slc6, centos?, centos8, ubuntu20) and bare-metal nodes (arm64,
MacOS, GPU)

* The latest release, LCG_99, was done completely using the release
pipeline with the possibility of doing all the steps in one go of
selectively (via a number of boolean parameters)

16

Pipeline VecGeom-pipeline

VecGeom

AN000000:

| =" Recent Changes
&]

Stage View
Prepa InDocker Build&Test InBareMetal Build&Test
Average stage times: 63ms 21s 7min 32s Tmin 19s Oms
(Average full run time: ~8min ' ! ' ' '
[#2538 default-vc-cudal0-gcc8-Release

Mar 07 I .

Change 4min 59s
04:57

2T CDE 1 o 7 7 Daloac
7 SPEC-vc-centos7-gcc7-Release |

* Implemented Jenkins Pileline VecGeom

v e, -, - 1. an D
default-vc-centos7-clangT!

§ z:/_‘;-i b deta
Mar 07 No

i 42s 4min 21s
04:52

+ Added Jenkinsfile in GitHub - . N—— -
roject VecGeom-nightly
repository

VecGeom nightly build

Configuration Matrix native

Configuration Matrix default SPEC|AVX |GDML |default| SPEC|AVX |GDML |default| SPEC|AVX |GDML |default|SPEC | AVX default SPEC | AVX

centos?7 Debug |vc

* The same pipeline is triggered S0

scalar

either by GitLab MRs or scheduled ===, .

Release |vc U

0

scalar

daily for the nightlies

scalar

Release vc

CO 00

scalar

bubuntu18 Debug |vc
vscalar

bRelease ve

scalar

17

AdePT

* Similar as VecGeom but the repository is in GitHub instead of GitLab
* Added Jenkinsfile to repository

* Added Webhook connecting to our Jenkins instance

“ Pipeline is triggered by a PR S W Name s Last Success
Oor inte]_‘aCtion With the IbOt’ ’J AdePT-CI 3 days 2 hr - #75-drbenmorgan#87-gcc8-Release
s . - AdePT-nightly 17 hr - #49
« Missing the some reporting back 5
: : - | AdePT-pipeline 16 hr - #100 gcc8-Debug
from Jenkins to GitHub -
g AdePT-PR-trigger 3 days 2 hr - #82

18

Summary

* Using Jenkins (declarative pipelines) has simplified enormously the
LCG nightlies and releases

* Only two Jenkins projects (instead of many: for the different stacks, platforms,
stages, etc.)

* For the producing the releases several manual interventions has been avoided

* The jenkinsfile with the configuration and instructions sits in the repository
itself, thus facilitating the maintenance

+ Same logic has been replicated for other projects to implement CI: VecGeom
(GitLab), AdePT (GitHub)

19

