
Lorem Ipsum Dolor

Jenkins Pipelines for LCG Pere Mato
8 March 2021

Motivation
❖ Jenkins Pipeline is a suite of plugins that supports implementing and integrating continuous

integration and delivery pipelines into Jenkins
❖ The jenkinsfile contains all the parameters, stages, steps to define the pipeline and is stored together

with the source code of the project

❖ The Jenkins for the LCG nightlies and releases suffered from the following problems
❖ Many independent jobs to implement the different stages (build, upload binaries, cvmfs install, test,

etc.) needed be maintained (using a GUI), passing parameters between jobs has been a pain, several
levels of scripts, ...

❖ Not possible to mix docker and non-docker elements in a configuration matrix (ARM, MacOS,
GPUs,...)

❖ Keeping in sync several GIT repositories together with the Jenkins job configurations (not in GIT)
using the Web GUI is complex and error prone

2

What is a Jenkins Pipeline?
❖ A Jenkinsfile can be written using two types of

syntax: Declarative and Scripted
❖ Declarative Pipeline is a more recent feature of

Jenkins Pipeline which provides richer syntactical
features over Scripted Pipeline syntax, and is designed
to make writing and reading Pipeline code easier

❖ Jenkins job starts by getting the Jenkinsfile from
the repository
❖ It learns about the parameters, steps, options,

instructions from the file itself
3

pipeline {
 agent any
 stages {
 stage('Stage 1') {
 steps {
 echo 'Hello world!'
 }
 }
 }
}

Jenkins Pipeline Concepts
❖ Pipeline: This is the fundamental block to the syntax of a declarative pipeline. It is

a user-defined framework that includes all the processes like create, check, deploy,
etc.

❖ Agent: It instructs Jenkins to assign the builds to an executor. Can be global or
different for every stage. Several types of agents: Any, None, Label, Docker

❖ Stage: A stage block contains a series of steps in a pipeline. That is, the build, test,
and deploy processes all come together in a stage. Generally, a stage block is used
to visualize the Jenkins pipeline process.

❖ Step: A step is nothing but a single task that executes a specific process at a defined
time. A pipeline involves a series of steps. Groovy can be used to write the scripts.

4

Creating Jenkins Pipeline Project
❖ Pipeline is a type of jenkins project (if the Pipeline plugin is available in the

instance)

❖ Write the directly the pipeline script or indicate the repository where the
jenkinsfile is

❖ That’s all
5

With Jenkins Blue Ocean is supposed to be even easier!

LCG Nightlies use case

❖ Goal: Put all the LCG nightlies in only two Jenkins jobs
❖ One with the full pipeline for a single version (dev3, devARM, etc.) and

platform (compiler, architecture,.etc.) for all the steps (build, install, test, etc.)

❖ One with a full configuration matrix that triggers N full pipeline jobs on
schedule

6

Full Pipeline for a single Version/Platform
❖ Mixing docker and non-docker

build and tests
❖ Stages are executed on certain

conditions (logical expressions)

❖ Installation in CVMFS is slightly
different for MacOS and Linux
❖ Pre-installation to fix RPATHs on

MacOS

7

Global Parameters

8

Starting a Parametrised job

❖ We can then trigger a build using
the usual Jenkins GUI panels
❖ It reads the Jenkinsfile and offers all

parameters to the User

❖ Parameter definition and default
values stays in the Jenkinsfile

9

Docker Integration

❖ Docker builtin agent
ready to be used
❖ host and container

share the same
Workspace

❖ Support for
kubernetes is also
available :-)

10

Build and Copy Stages
❖ Any shell command can

be used

❖ Some variables can be
updated after the build
and transferred to
subsequent stages
❖ e.g. BUILDHOST,

CTEST_TAG, CVMFS
revision, ...

11

Test Stages
❖ Test can be run on

different nodes

❖ Variables and
parameters are
shared within all the
pipeline
❖ Facilitates

communication
between stages

12

Pipeline Stage View

13

Nightly Configuration Matrix

❖ Single matrix for all LCG nightlies
❖ Global view

❖ No details on how to build/test
each cell

❖ Spawn N pipeline jobs

14

Release Pipeline

❖ Implemented a ‘release’ pipeline with slightly different stages (publish
LCGinfo DB, create and publish RPMs, testing RPMs, etc.)

❖ The nightly and release pipeline
share the same set of instructions
❖ File with Groovy functions and variables

15

Current LCG Status

❖ LCG Nightlies are done using the Jenkins Pipelines on a mix of docker
images (slc6, centos7, centos8, ubuntu20) and bare-metal nodes (arm64,
MacOS, GPU)

❖ The latest release, LCG_99, was done completely using the release
pipeline with the possibility of doing all the steps in one go of
selectively (via a number of boolean parameters)

16

VecGeom

❖ Implemented Jenkins Pileline VecGeom
❖ Added Jenkinsfile in GitHub

repository

❖ The same pipeline is triggered
either by GitLab MRs or scheduled
daily for the nightlies

17

AdePT

❖ Similar as VecGeom but the repository is in GitHub instead of GitLab
❖ Added Jenkinsfile to repository

❖ Added Webhook connecting to our Jenkins instance

❖ Pipeline is triggered by a PR
or interaction with the ‘bot’

❖ Missing the some reporting back
from Jenkins to GitHub

18

Summary
❖ Using Jenkins (declarative pipelines) has simplified enormously the

LCG nightlies and releases
❖ Only two Jenkins projects (instead of many: for the different stacks, platforms,

stages, etc.)

❖ For the producing the releases several manual interventions has been avoided

❖ The jenkinsfile with the configuration and instructions sits in the repository
itself, thus facilitating the maintenance

❖ Same logic has been replicated for other projects to implement CI: VecGeom
(GitLab), AdePT (GitHub)

19

