Terahertz dielectric properties, ultrafast photocarrier capture/recombination and transport dynamics in graphenemesoporous silicon nanocomposites

African School of Physics Seminars September 14th 2021

Défi Junior Jubgang Fandio, Université de Sherbrooke, Canada

ASP2016-Kigali, Rwanda

Plan of the presentation

- Output interest
- **Research methods**
- Results on investigating Graphene-Mesoporous Silicon Nanocomposites

Why studying electronic properties in semiconductor nanostructures?

Nanoelectronics

Smartphone Computers Flat screens Informatique

Optoelectronics

Photo-emitters Photosensors Quantum Technology Light emitting diodes Fiber optics

4

THz technology

Electronic circuitory

YBa₂Cu₃O_{6+δ}

Y

00

😑 Cu

Ba

Imaging and security

5

Nature communications

http://zeenews.india.com

http:// terasense.com

Quantum Materials

-0.1

-0.2 -

-0.3-

E_B (eV)

Terahertz (THz) radiation

0,1 - 30 THz

1 THz = 10^{12} Hz = 33 cm⁻¹ = 4,1 meV = 48 K

Research Methods

THz time-domain spectroscopy

Optical Pump-Terahertz Probe spectroscopy

THz time-domain spectroscopy

Amplitude and phase of T(w) are function of n(w) (σ ou ε)

Appropriate modelling of enables to extract dielectric or transport properties

iõ $\epsilon_r +$

Dielectric properties of Semiconductors

Défi Jr., PhD Thesis, Université de Sherbrooke

Semi-classical transport models

Classical transport in N-doped GaAs

Défi Jr., PhD Thesis, Université de Sherbrooke

Free charge scattering time and density determined

Optical Pump THz probe spectroscopy

Time resolved photoconductivity

$$\frac{\Delta T(t)}{T} \propto \Delta \sigma(t)$$
$$= e \left(\mu_n \Delta n(t) + \mu_p \Delta p(t) \right)$$

Frequency resolved photoconductivity

$$\Delta \widetilde{\sigma}_{s}(\boldsymbol{\omega}) = \Delta \sigma_{1}(\boldsymbol{\omega}) + i \Delta \sigma_{2}(\boldsymbol{\omega})$$
¹²

Photocarrier dynamics and transport in Si Nanocrystals

Drude transport in an unconfined system (d)

$$\sigma(\omega) = \frac{nq^2\tau}{m^*(1-i\omega\tau)}$$

Drude-Smith transport type in Si nanocrystals (confined system) (c)

$$\sigma(\omega) = \frac{\sigma_0}{1 - i\omega\tau} \left[1 + \sum_{n=1}^{\infty} \frac{c_n}{(1 - i\omega\tau)^n} \right]$$

Any Questions so far?

Porous silicon

□ Large surface-to-volume ratio

Conserved Si crystalline structure

Controllable pore size and

orientation

Controllable crystallite size

Graphene-Mesoporous Silicon Nanocomposites

C750

C800

C850

C920

 $I_{\rm D}/I_{\rm G} = 1.28$

I_D/I_G= 1.15

 $I_{\rm D}/I_{\rm G} = 1.09$

 $I_{\rm D}/I_{\rm G} = 0.99$

2000

In-plane view

Side view

THz time-domain spectroscopy

Table 1 Impact of graphene deposition temperature on refractive index and porosity as determined by Bruggeman model (eqn (6))

Samples	Temp (°C)	$n_{\rm eff}$	Porosity p (%)	<i>f</i> _c (%)
mPSi	_	1,72	63.5	_
C750	750	1.96	61.5	7.7
C800	800	2.02	59.8	9.4
C850	850	2.07	59.7	9.5
C920	920	2.53	54.5	14.7

$$p\frac{n_0^2 - n_{\rm eff}^2}{n_0^2 + 2n_{\rm eff}^2} + f_{\rm Si}\frac{n_{\rm Si}^2 - n_{\rm eff}^2}{n_{\rm Si}^2 + 2n_{\rm eff}^2} + f_{\rm C}\frac{n_{\rm C}^2 - n_{\rm eff}^2}{n_{\rm C}^2 + 2n_{\rm eff}^2} = 0,$$

D.J. Jubgang Fandio et al., Nanoscale Adv. 2020, 2, 340

THz time-domain spectroscopy

Table 1 Impact of graphene deposition temperature on refractive index and porosity as determined by Bruggeman model (eqn (6))

Samples	Temp (°C)	$n_{\rm eff}$	Porosity p (%)	f _c (%)
mPSi	_	1.72	63.5	_
C750	750	1.96	61.5	7.7
C800	800	2.02	59.8	9.4
C850	850	2.07	59.7	9.5
C920	920	2.53	54.5	14.7

- Dielectric properties determined
- □ Porosity determined using an Effective Medium Theory
- □ Volume fraction of Carbon determined
- □ Increase in absorption level consistent with the
 - presence of defect states (dangling bonds, impurities).
 - Scénario also consistent with Raman spectroscopy.

Optical pump THz probe spectroscopy

(2) Photocarrier cooling
(3) Photocarrier trapping
(4) Band-to-band recombination
(5) Auger recombination

Optical pump THz probe spectroscopy

- $\hfill\square$ Decrease of τ_1 and τ_2 with graphene coating.
- $\hfill\square$ Decrease of τ_1 and of $\Delta T_{max}/T$ with the graphene deposition temperature
- T₁ likely associated to the presence of surface defect states

Capture / recombination dynamics $n_2(t)$ Photoelectrons n1(t) O Photoholes Ttrap ge ΔE=65 meV Traps n_t(t) $\frac{dn_2(t)}{dt} = G(t) - \frac{n_2(t)}{\tau_c},$ $N_t = Max[n_t]$ G(t) G(t) $\frac{dn_1(t)}{dt} = \frac{n_2(t)}{\tau_c} - \frac{n_1(t)}{\tau_{\rm trap}} \left(1 - \frac{n_t}{N_t}\right) + g_e n_t,$ τ_{rec} $\frac{dn_t(t)}{dt} = \frac{n_1(t)}{\tau_{\text{trap}}} \left(1 - \frac{n_t}{N_t}\right) - g_e n_t - \frac{n_t}{\tau_{\text{rec}}},$

D.J. Jubgang Fandio et al, PRB 102, 115407 (2020)

Capture / recombination dynamics

D.J. Jubgang Fandio et al, PRB 102, 115407 (2020)

Échantillons	τ _{trap} (ps)	τ _{rec} (ps)	N _t (x 10 ¹⁵ cm ⁻²)	
C750	$4,3 \pm 0,3$	110 ± 36	3	
C800	$4,1 \pm 0,2$	100 ± 26	20	
C850	$4,0 \pm 0,1$	90 ± 17	20	22

Frequency Resolved photoconductivity

D.J. Jubgang Fandio et al, PRB 102, 115407 (2020)

 $\Delta\sigma(\omega)$ Modified Drude-Smith model

$$\Delta\sigma(\omega) = \frac{Ne^2\tau'/m^*}{1-i\omega\tau'} \left(1 + \frac{c}{1-i\omega/a}\right)$$

Charge transport properties

Effective mobility preserved ~ 446 cm²/(V.s)

Increase of charge confinement with temperature: - C = -0.727 for mPSi

- C = -0.956 for C850

D.J. Jubgang Fandio et al, PRB 102, 115407 (2020)

Conclusions

- 1. Dielectric properties established.
- 2. Relatively low photocarrier time(5 ps)
- 3. Confined charge carrier transport at Si/graphene interfaces by electrostatic barriers.
- 4. Good candidates for broadband THz emitters

Photoconductive antenna

$$\begin{split} \vec{E}_{\text{THz}}(z,t) &= \frac{1}{4\pi\epsilon_0} \frac{A}{c^2 z} \frac{\partial \vec{J}(t)}{\partial t}, \\ &= \frac{Ae}{4\pi\epsilon_0 c^2 z} \frac{\partial N(t)}{\partial t} \mu \vec{E}_{b}, \end{split}$$

Bagsican et al., Nanoletters, 2020,20,53098-3105

Acknowledgement

CANADA FOUNDATION FOR INNOVATION FONDATION CANADIENNE POUR L'INNOVATION Fonds de recherche sur la nature et les technologies QUÉBEC * *

THANKS FOR YOUR KIND ATTENTION

THANKS YOU LORD JESUS