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Machine learning for High Energy Physics
● One of the major objectives of the experimental programs at the 

LHC is the discovery of new physics.
● Machine Learning: “application of artificial intelligence that 

provides systems the ability to automatically learn and improve 
from experience without being explicitly programmed”
○ It has become one of the most popular and powerful techniques 

and tools for High Energy Physics (HEP) data analysis
○ It greatly enhances our ability to identify rare signal against 

immense backgrounds: important for discovery of new physics
● Issues raised by machine learning

○ Heavy CPU time is needed to train complex models
■ The training time increases with more data

○ May lead to local optimization, instead of global optimization
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Machine Learning for High Energy Physics
● Classical Machine learning algorithms commonly used in High 

Energy Physics data analysis
○ Boosted Decision Tree (BDT): an algorithm that incrementally builds 

an ensemble of decision trees and combines all the decision trees to 
form a strong classifier. 

○ Support Vector Machine (SVM): it maps the input vectors X into a 
high-dimensional feature space Z through some nonlinear mapping, 
chosen a priori. In this space, an optimal separating hyperplane is 
constructed to separate signal from background. 

○ Neural Network (NN): a computing system made up of a number of 
simple, highly interconnected processing elements, which process 
information by their response to external inputs. 
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Quantum Machine Learning  
● Quantum computing

○ Perform computation using the quantum state of qubits
○ A way of parallel execution of multiple processes 
○ Can speed up certain types of problems effectively

● Quantum machine learning
○ Intersection between machine learning and quantum 

computing
○ May lead to more powerful solutions and offer a computational 

“speed up”, by exploiting the exponentially large quantum 
state space through the action of superposition, entanglement, 
etc

○ Quantum machine learning could possibly become a valuable 
alternative to classical machine learning for HEP data analysis

4
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Our program with Quantum Machine Learning

Our present program is to employ the following 3 
quantum machine learning methods
     Method 1. Variational Quantum Classifier Method

Method 2. Quantum Support Vector Machine Kernel Method
Method 3. Quantum Neural Network Method 

to LHC High Energy Physics analysis, for example ttH (H → 𝜸𝜸) 
and H→𝞵𝞵 (two LHC flagship analyses).

5

Our Goal:
     To perform LHC High Energy Physics analysis with 
Quantum Machine Learning, to explore and to demonstrate 
that the potential of quantum computers can be a new 
computational paradigm for big data analysis in HEP, as a 
proof of principle 
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● We study the quantum machine learning methods on 
gate-based* quantum computer simulators and hardware:
○ 1. IBM quantum computer simulator and hardware (using IBM 

Qiskit libraries)
○ 2. Google quantum computer simulator (using Google Cirq and 

TensorFlow Quantum libraries)
○ 3. Amazon quantum computer simulator (using Amazon Braket 

Cloud Service)

6

Our program with Quantum Machine Learning

* gate-based: computing is 
achieved by a sequence of 
quantum gates, as opposed 
to D-wave quantum 
annealers

Artist’s rendition 
of the Google 
quantum 
processor 



We have applied quantum machine learning to
two LHC flagship analyses: 
ttH (H → 𝜸𝜸) and H → 𝞵𝞵

 

7
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ttH (H → 𝜸𝜸) analysis at the LHC 
The observation of ttH production (Higgs boson production in association with a top 
quark pair) by ATLAS and CMS at the LHC directly confirmed the interaction between 
the Higgs boson and the top quark, which is the heaviest known fundamental particle

8

● Using Boosted Decision Tree (BDT, a classical machine learning 
technique) with XGBoost package, the ATLAS Collaboration 
observes the ttH (H→γγ) process  

● Our study performs the event classification of the ttH (H→γγ) 
analysis (hadronic channel) with delphes simulation samples 
and quantum machine learning

(Top)

(((Anti-top)

(Higgs)

Phys. Lett. B 784 (2018) 173 M𝜸𝜸 [GeV]

https://www.sciencedirect.com/science/article/pii/S0370269318305732?via%3Dihub
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H → 𝞵𝞵 analysis at the LHC 
Although the coupling between the Higgs boson and 3rd-generation fermions has been 
observed, currently the coupling between the Higgs boson and 2nd-generation fermions 
is under intensive investigation. H→𝞵𝞵 is the most promising process to observe such a 
coupling by ATLAS and CMS at the LHC
ATLAS: 2.0σ, Phys. Lett. B 812, 135980 (2021)
CMS: 3.0σ, JHEP 01 148 (2021)
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● Using Boosted Decision Tree (BDT, a classical machine 
learning technique) with XGBoost package, the ATLAS 
Collaboration searches for the H→𝞵𝞵 decay  

● Our study performs the event classification of the H→𝞵𝞵 
analysis (VBF channel) with delphes simulation samples and 
quantum machine learning

Mμμ [GeV]Phys. Lett. B 812 (2021) 135980

https://www.sciencedirect.com/science/article/pii/S0370269320307838?via%3Dihub
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Delphes Simulation
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● Delphes [JHEP 02 057 (2014)] is a program that 
performs fast simulation of multipurpose detectors’ 
response 

● It reconstructs physics objects for physics 
analyses, including photons, electrons, muons, jets 
and missing transverse momentum
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e.g. in ttH (H→γγ) analysis,
number of features (variables) = 23

● PCA: Principal Component Analysis 
method is used to convert/combine 
features into fewer features to match 
the number of qubits (features = 
variables)

● FeatureMap: encoding classical 
variables to quantum states. Currently, 
in our studies, number of encoded 
variables has to equal number of qubits 
(e.g. 5, 10, 20)

Variational Quantum Classifier method, for 
example

Our Workflow for Quantum Machine Learning



Method 1

Employing Variational Quantum Classifier 
for ttH (H → 𝜸𝜸) and H → 𝞵𝞵 analyses

12
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Method 1: Variational Quantum Classifier (VQC) 

13

● In 2018, a Variational Quantum Classifier method 
was introduced by IBM, published in Nature 567 
(2019) 209. 

● The Variational Quantum Classifier method can be 
summarized in four steps.
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Method 1: Variational Quantum Classifier (VQC) 

14

● 1. Apply feature map circuit UΦ(𝑥)⃗ 
to encode input data 𝑥 ⃗into 
quantum state |Φ(𝑥)⃗⟩

● 2. Apply short-depth quantum 
variational circuit W(θ) which is 
parameterized by gate angles θ

● 3. Measure the qubit state in the 
standard basis (standard basis: 
|0⟩, |1⟩ for 1 qubit; |00⟩, |01⟩, |10⟩, 
|11⟩ for 2 qubits; ...)

● 4. Assign the label (“signal” or 
“background”) to the event 
through the action of a diagonal 
operator f in the standard basis

● We have two independent sets of 
events: one for training and one for 
testing

● During the training phase, a set of 
events are used to train the circuit W(θ) 
to reproduce correct classification

● Using the optimized W(θ), the testing 
events are used for evaluation 
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Using 10 qubits, we successfully finished training and 
testing 100 events with IBM Qiskit QASM simulator (where 
‘100’ events means 100 training events and 100 testing 
events).

● Q simulator (Quantum circuits simulator): here IBM 
Qiskit QASM simulator is used. This simulation 
incorporates the hardware noise

● Quantum circuits are optimized to best fit the constraints 
imposed by hardware (e.g. qubit connectivity, hardware 
noise) and the nature of data

Method 1: Employing VQC (Variational Quantum Classifier) with 
IBM Q simulator for ttH (H → 𝜸𝜸) analysis and H → 𝞵𝞵 analysis
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● Definitions
○ ROC (Receiver Operating Characteristic) Curve: a graph 

showing background rejection vs signal efficiency.
○ AUC: Area Under the ROC Curve, for quantifying 

discrimitation power of machine learning algorithms 

16

Method 1: Employing VQC (Variational Quantum Classifier) with 
IBM Q simulator for ttH (H → 𝜸𝜸) analysis and H → 𝞵𝞵 analysis

ROC curves and 
AUC are standard 
metrics for 
machine learning 
applications
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Using ttH analysis dataset (100 events, 10 
variables) and H → 𝞵𝞵 analysis dataset (100 
events, 10 variables), Variational Quantum 
Classifier on simulator (blue) performs similarly 
with classical BDT (green) and classical SVM 
(yellow).  (Results are average over ten datasets)

AUC (ttH) AUC (H → 𝞵𝞵)

VQC 0.81 0.83

BDT 0.83 0.80

SVM 0.83 0.82

Method 1: Employing VQC (Variational Quantum Classifier) with 
IBM Q simulator for ttH (H → 𝜸𝜸) analysis and H → 𝞵𝞵 analysis
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● With the help of IBM Research Zurich, Fermilab and BNL, 
we have carried out a number of jobs on the IBM 
superconducting quantum computers (ibmq_boeblingen, a 
20-qubit machine and ibmq_paris, a 27-qubit machine). In 
each job, 10 qubits of the quantum computer are used to 
study 100 training events and 100 testing events. 

○ The hardware running time for 100 events is 200 hours
● For each analysis, due to current limitation of hardware 

access time, we apply the Variational Quantum Classifier 
method to one dataset on quantum hardware (rather than 
ten datasets on quantum simulator) 

18

Method 1: Employing VQC (Variational Quantum Classifier) with 
IBM hardware for ttH (H → 𝜸𝜸) analysis and H → 𝞵𝞵 analysis
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● The hardware loss (red) is decreasing with the increase of 
number of iterations*. This indicates that the Quantum Computer 
has the ability to learn how to differentiate between the signal 
and the background for a HEP analysis.

Red: Quantum Hardware

Loss:  the mean of the squared 
differences between the output 
scores from the quantum 
algorithm and the ideal scores

* “iteration” indicates the number of times the algorithm’s parameters are 
updated in training

Method 1: Employing VQC (Variational Quantum Classifier) with 
IBM hardware for ttH (H → 𝜸𝜸) analysis and H → 𝞵𝞵 analysis
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● Using ttH analysis dataset (100 events, 10 variables) and H → 𝞵𝞵 
analysis dataset (100 events, 10 variables), with 250 iterations, the 
result of Variational Quantum Classifier from Quantum Hardware 
and result from Quantum Simulator are in good agreement. 

IBM Hardware

hardware AUC = 0.82, simulator AUC = 0.83 hardware AUC = 0.81, simulator AUC = 0.83

Method 1: Employing VQC (Variational Quantum Classifier) with 
IBM hardware for ttH (H → 𝜸𝜸) analysis and H → 𝞵𝞵 analysis

* “iteration” indicates the number of times the algorithm’s parameters are updated in training



Method 2
 
Employing Quantum Support Vector Machine 
(QSVM) Kernel method
for ttH (H → 𝜸𝜸) analysis

21
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Method 2: Quantum SVM Kernel method

22

● Quantum SVM Kernel method (introduced by IBM, published in 
Nature 567 (2019) 209): 

○ map classical data 𝑥⃗  to a quantum state |Φ(𝑥)⃗⟩ using a Quantum 
Feature Map function; 

○ calculate the similarity between any two data events (“kernel entry”) 
as 𝐾(𝑥⃗

1
,𝑥⃗

2
)=|⟨Φ(𝑥⃗

1
)|Φ(𝑥⃗

2
)⟩|² using a quantum computer; 

○ then using the kernel entries to find an optimal separating hyperplane 
that separates signal from background. 

map classical data

     𝑥1⃗→|Φ(𝑥1⃗)⟩ 
     𝑥2⃗→|Φ(𝑥2⃗)⟩
     𝑥3⃗→|Φ(𝑥3⃗)⟩
     ...

calculate kernel entries

𝐾(𝑥⃗1,𝑥2⃗)=|⟨Φ(𝑥1⃗)|Φ(𝑥⃗2)⟩|²

𝐾(𝑥⃗1,𝑥3⃗)=|⟨Φ(𝑥1⃗)|Φ(𝑥⃗3)⟩|²

𝐾(𝑥⃗2,𝑥3⃗)=|⟨Φ(𝑥2⃗)|Φ(𝑥3⃗)⟩|²

 ...

find separating hyperplane

𝑥⃗1

 𝑥⃗2

 𝑥⃗3
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We are performing the ttH analysis using QSVM Kernel 
method with up to 20 qubits: 

○ A customized FeatureMap is used. The quantum 
FeatureMap circuit encodes classical data to a 
quantum state 

○ Grid-Search with cross-validation* is used to optimize 
the QSVM Kernel performance 

Method 2: Employing Quantum SVM Kernel method with 
quantum simulators for ttH (H → 𝜸𝜸) analysis  

* Cross-validation is a resampling procedure used to evaluate machine learning 
models on a limited data sample 
https://machinelearningmastery.com/k-fold-cross-validation/

https://machinelearningmastery.com/k-fold-cross-validation/
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● Our group has implemented the QSVM Kernel 
algorithm using the qsim Simulator from the Google 
TensorFlow Quantum framework, the Statevector 
Simulator from the IBM Qiskit framework and the Local 
Simulator from the Amazon Braket framework 
○ These simulators represent the ideal quantum hardware that 

performs infinite measurement shots and experiences no 
hardware device noise 

○ We have overcome the challenges of heavy computing 
resources in the use of up to 20 qubits and up to 50000 
events on the quantum computer simulators 

Method 2: Employing Quantum SVM Kernel method with 
quantum simulators for ttH (H → 𝜸𝜸) analysis  
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● For 15 qubits, using ttH analysis dataset (20000 events), QSVM 
Kernel on simulator (red) achieves similar performances with 
classical SVM (blue) and classical BDT (green).  (Results are 
averaged over sixty datasets)

Method 2: Employing Quantum SVM Kernel method with 
quantum simulators for ttH (H → 𝜸𝜸) analysis 
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● For 15 qubits, using ttH analysis dataset (20000 events), Google 
qsim simulator (red), IBM statevector simulator (blue), and 
Amazon local simulator (green) provide identical performances 
for QSVM Kernel method

Method 2: Employing Quantum SVM Kernel method with 
quantum simulators for ttH (H → 𝜸𝜸) analysis 
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● For 15 qubits, using ttH analysis dataset (10000-50000 events), 
QSVM Kernel on simulator (red) achieves similar performances 
with classical SVM (blue) and classical BDT (green). 

● QSVM Kernel method and 
noiseless simulators enable 
us to work with a larger 
number of events. 

Method 2: Employing Quantum SVM Kernel method with 
quantum simulators for ttH (H → 𝜸𝜸) analysis
AUC vs number of events
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● For 10-20 qubits, using ttH analysis dataset (20000 events), 
QSVM Kernel on simulator (red) achieves similar performances 
with classical SVM (blue) and classical BDT (green). 

● QSVM Kernel method and 
noiseless simulators also 
enable us to work with a 
larger number of qubits. 

Method 2: Employing Quantum SVM Kernel method with 
quantum simulators for ttH (H → 𝜸𝜸) analysis
AUC vs number of qubits
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● We have also been running the QSVM Kernel algorithm 
on quantum computer hardware provided by IBM 
(based on superconducting circuits) 
○ to assess the quantum machine learning performances on 

today's noisy quantum computer hardware

○ due to current limitation of access time on imbq_paris, we 
only process six datasets of 100 training events and 100 
testing events

○ for the six datasets, the average hardware running time is 
approximately 680 minutes per run

Method 2: Employing QSVM Kernel with IBM hardware
(ibmq_paris, a 27-qubit machine) for ttH (H → 𝜸𝜸) analysis
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Method 2: Employing QSVM Kernel with IBM hardware
(ibmq_paris, a 27-qubit machine) for ttH (H → 𝜸𝜸) analysis

● Using ttH analysis dataset (100 events, 15 variables), the QSVM 
Kernel results on the Quantum Hardware (15 qubits) are 
promising and approaching the QSVM Kernel results on 
Quantum Simulator (the difference is likely due to effect of 
hardware noise)

IBM Hardware
hardware AUC = 0.777 

simulator AUC = 0.831
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Method 2: Employing QSVM Kernel with IBM hardware
(ibmq_paris, a 27-qubit machine) for ttH (H → 𝜸𝜸) analysis

● ROC curves for each 
of the six runs:

● The effect of quantum 
hardware noise seems 
to fluctuate among the 
runs



Method 3 

Employing Quantum Neural Network 
for ttH (H → 𝜸𝜸) analysis

32
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Method 3: Quantum Neural Network (QNN) 

33

● Quantum neural networks (QNNs): combining neural 
network algorithms and quantum computing 

○ Perform the computational intensive part of a neural network 
algorithm on a quantum computer with the aim of better efficiency 
and performance

● Many QNN  models have been recently studied in the field 
of quantum machine learning,  for example, using Google 
Tensorflow quantum library and IBM Qiskit library 
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We have been exploring a hybrid QNN of three layers:
○ Classical layer 1: transform input data so 

that its number of outputs matches 
number of qubits (PCA is no longer 
necessary)

○ Quantum layer (the core part): encode 
classical data into a quantum state, apply 
variational circuit containing trainable 
parameters, and measure the quantum 
state

○ Classical layer 2: convert the 
measurement of qubits to classification 
labels

Three layers are trained together to maximize the overall 
performance

Method 3: Hybrid Quantum Neural Network (QNN) 
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● We employ the hybrid quantum neural network 
method for the ttH (H → 𝜸𝜸) analysis, using:
○ Google quantum computer simulator (using Google Cirq and 

TensorFlow Quantum libraries)

○ IBM quantum computer simulator and hardware (using IBM 
Qiskit libraries)

35

Method 3: Employing QNN for ttH (H → 𝜸𝜸) analysis
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Method 3: Employing QNN with Google simulator 
for ttH (H → 𝜸𝜸) analysis

Work under development

● In the official ATLAS ttH (H → 𝜸𝜸) analysis with LHC data, 
~0.5 million events are used for training+validation+testing

● On Google simulator, we recently apply the QNN to a ttH 
analysis dataset (simulation data using Delphes) of ~0.3 
million events (splitting between training, validation and 
testing samples), which is similar to the sample size used 
in the official ATLAS data analysis
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● Using the ttH analysis dataset with 0.3 million Delphes events and 15 
qubits, QNN on simulator (red) now performs similarly with classical 
Deep Neural Network (DNN) (blue) and classical BDT (green).

● The optimization of this QNN is still under development (e.g. more 
qubits), and we hope to achieve quantum advantage with large datasets

Method 3: Employing QNN with Google simulator 
for ttH (H → 𝜸𝜸) analysis

Work under 
development

QNN AUC: 0.9332

DNN AUC: 0.9326

BDT AUC: 0.9347

0.3 million events 
15 qubits
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● 100 events, 10 
qubits, 1 run

● QNN hardware: 
ibmq_paris 

● QNN simulator: 
IBM simulator with 
no noise

● The performance with quantum hardware is close to 
the performance with no-noise simulation.

● Hardware running time: 384 hours

Method 3: Employing QNN with IBM Q hardware (10 
qubits) for ttH (H → 𝜸𝜸) analysis

AUC (100 events)

Hardware 0.816

Simulator 0.816
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● We form an international and interdisciplinary collaboration with 
the Department of Physics and Department of Computer Sciences 
of University of Wisconsin, CERN Quantum Technology Initiative, 
IBM Research Zurich and IBM T.J. Watson Research Center, 
Fermilab Quantum Institute, BNL Computational Science Initiative, 
State University of New York at Stony Brook, Quantum Computing 
and AI research of Amazon Web Services

● Although the era of efficient quantum computing may still be 
years away, we have made promising progress and obtained 
preliminary results in applying quantum machine learning to High 
Energy Physics. A PROOF OF PRINCIPLE.

39

Summary (part 1)
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● We have employed 3 methods of Quantum Machine Learning

● Method 1: VQC-Variational Quantum Classifier 
(accepted by J. Phys. G: Nucl. Part. Phys. 
https://doi.org/10.1088/1361-6471/ac1391)

● Method 2: QSVM-Quantum Support Vector Machine Kernel 
method 
(arXiv:2104.05059)

● Method 3: QNN-Quantum Neural Network 

● We have applied the three methods to two LHC HEP flagship 
analyses (ttH (H → 𝜸𝜸) and H → 𝞵𝞵) with Delphes simulation 
events. 

40

Summary (part 2)

https://doi.org/10.1088/1361-6471/ac1391
https://arxiv.org/abs/2104.05059
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● Results from Quantum Simulator
● With 100 events and 10 qubits, method 1: VQC (Variational 

Quantum Classifier) method on IBM Quantum Simulator 
performs similarly to classical BDT and classical SVM. 

● With up to 50000 events and up to 20 qubits, method 2, QSVM 
(Quantum Support Vector Machine) Kernel method on Google, 
IBM and Amazon Quantum Simulators performs similarly to 
classical BDT and classical SVM in the ttH (H → 𝜸𝜸) channel. 

● With 0.3 million events and 15 qubits, method 3, QNN 
(Quantum Neural Network) method on Google Quantum 
Simulator performs similarly to classical BDT and classical 
DNN in the ttH (H → 𝜸𝜸) channel.

● Results from Quantum Hardware
● With 100 events, for method 1 (10 qubits), method 2 (15 qubits), 

method 3 (10 qubits), IBM Quantum Hardware and IBM Quantum 
Simulator show comparable performance.

41

Summary (part 3)
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● Our results (on both simulators and hardware) demonstrate 
quantum machine learning on the gate-model quantum 
computers has the ability to differentiate signal and background 
in realistic physics datasets

● Future developments: 
● We will investigate further and hopefully will see soon 

quantum machine learning outperforms classical machine 
learning, in particular, when more qubits are utilized

● Furthermore, future quantum computers might offer speed 
ups in quantum machine learning which could be critical for 
the HEP community

42

Summary (part 4)
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● Difficulties at present:
● Only 100 events are used in hardware jobs

■ Limited access time
● Only 10-15 qubits are used in hardware jobs

■ So far circuit length and number of CNOT gates are limited 
in our present study. 

● To use Quantum Computer Hardware for Machine Learning in 
future High-Luminosity LHC physics analyses, we need to extend 
our studies to larger event sample sizes and more qubits

● As of today, the maximal number of hardware qubits that I know 
of: 65 (IBM) and 54 (Google)

● To demonstrate that future Quantum Computers offer speed up 
in Quantum Machine Learning 
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Challenges ahead
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● I am confident that, in the near future, 
the quantum machine learning methods can 
demonstrate, in quantum simulation, the quantum 
advantage with a larger number of qubits (e.g. greater 
than 30 qubits). 
This is in the context of application to High Energy 
Physics data analysis. 
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Prediction
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● From the roadmap presented by IBM and Google, it is 
expected that quantum hardware in the future will 
reduce noise and achieve a performance close to 
noiseless quantum simulators. In addition, they are 
working hard to speed up the quantum hardware 
running time.

● With the large investments in quantum computing and 
fierce international competitions in technology, this 
expectation is realistic.
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Prediction
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● Maria Spiropulu et al, “Solving a Higgs optimization problem with 
quantum annealing for machine learning”, Nature 550, 375 (2017)

● Koji Terashi et al, “Event Classification with Quantum Machine 
Learning in High-Energy Physics”, Comput. Softw. Big Sci. 5, 2 
(2021)

● Davide Zuliani, Donatella Lucchesi, et al, “Quantum Machine 
Learning for jet tagging @ LHCb”, PyHEP 2021 (virtual) workshop 

● Plus more...
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Other studies on Quantum Machine Learning 
application for HEP that we know of 
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The following members from the Wisconsin 
group would answer your technical 
questions

Wen Guan Shaojun Sun Chen Zhou



BACKUP SLIDES
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● Using ttH analysis dataset (10000-50000 events, 15 variables), 
Google qsim simulator (red), IBM statevector simulator (blue), 
and Amazon local simulator (green) provide identical 
performances for QSVM Kernel method

Method 2: Employing Quantum SVM Kernel method with 
quantum simulators for ttH (H → 𝜸𝜸) analysis
AUC vs number of events
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● Using ttH analysis dataset (20000 events, 10-20 variables), 
Google qsim simulator (red), IBM statevector simulator (blue), 
and Amazon local simulator (green) provide identical 
performances for QSVM Kernel method

Method 2: Employing Quantum SVM Kernel method with 
quantum simulators for ttH (H → 𝜸𝜸) analysis
AUC vs number of qubits


