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To truly understand if Standard Model describes data
observed at LHC, need to connect theory and data
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For this, need to be able to go from Lagrangian
to fully exclusive events
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One of the holy grails of HEP is the full simulation of
scattering processes at colliders
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One of the holy grails of HEP is the full simulation of
scattering processes at colliders

Dream would be to literally compute the full S-matrix

Perform measurement of Create initial state with 2
final state attime T protons at time -T
2

(X(M)\UT, =T)|pp(=T))

Perform time evolution with full SM Hamiltonian
from initial time -T to final time T
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One of the holy grails of HEP is the full simulation of
scattering processes at colliders

Perform measurement of Create initial state with 2
final state at time T protons at time -T

(X(M)\UT, = T)|pp(=T))

Perform time evolution with full SM Hamiltonian
from initial time -T to final time T

1. This clearly requires Quantum Physics (Quantum Field Theory)

2. This is something that is not even remotely feasible using classical
computers

3. Would revolutionize how we can compare experimental collider
measurements with theoretical predictions
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Calculating an S-Matrix
on a Lattice
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Separating high and
low scales
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One can turn the QFT calculation into a QM calculation by
discretization / digitization

X(T)|UT,-T) \pp(—T)>|

All elements in this expression in terms of fields ¢(x)
Both position x and field ¢p(x) are continuous

Discretizing position x and digitizing field value ¢(x) turn continuous (QFT)
problem into discrete (QM) problem
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Basic idea is to map the infinite Hilbert space of QFT on a
finite dimensional HS making this a QM problem

Instead of having a continuous field ¢ at each position x, we put a digitized field
¢, at discrete points x; arranged on a lattice

¢n1 ¢n2 ¢n3 ¢n4

Hilbert space has dimension

v Mg # of digitized field values
<n¢> N : # of lattice points per dim
d : # of dimensions

Problem reduced to matrix multiplication
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Basic idea is to map the infinite Hilbert space of QFT on a
finite dimensional HS making this a QM problem

2
(X(M)\UT, =T)|pp(=T))

3 basic steps:

1. Create an initial state vector at time (-T) of two proton wave
packets

2. Evolve this state forward in time from to time T using the
Hamiltonian of the full interacting field theory

3. Perform a measurement of the state
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Let’s try to estimate the resources we need to simulate
physics at the LHC

Energy rage that can be described by lattice is given by

1 1
— < E<—
NI [
To simulate full energy range of LHC need

100MeV S ES7TeV

This needs 0(70,000%) ~ 104 lattice sites

Assume | need at least 5 bit digitization = n, = 2> =32

Dimension of Hilbert space is
3210% L o

Clearly completely impossible to perform such a calculation
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Separating high and
low scales
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Typical event at LHC involves very different energy scales:
High energy / short distance: Perturbation Theory
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Typical event at LHC involves very different energy scales:
Medium energy / medium distance: Parton shower
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Typical event at LHC involves very different energy scales:
Low energy / long distance: soft radiation / hadronization
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Can separate physics into three main categories: Hard,

Collinear. Soft |
soft particles

n-collinear n-collinear

hemisphere-a hemisphere-b
2
Collinear: m;, mJ/Q <Kmy < Q
Soft: mjz/ 0
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It is well known that scale separation simplifies problems
significantly
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It is well known that scale separation simplifies problems
significantly
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It is well known that scale separation simplifies problems

significantly | / ,
\\ '
2
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Much simpler for r>>Ll
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It is well known that scale separation simplifies problems

significantly
( \ ,
Potential expanded as / /
g P-x QN /

V(r) = |
") r r3 213 s

q ’ ? ’ Ql] %
Short distance physics

G G ()

Long distance physics
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In same

Energetic _ _ .
| ;” varticles d|erlescite|ft)n Collinear
Non- Can be Soft
energetlc anywhere
particles

Soft-Collinear Effective Theory
SCET

CWB, Fleming, Luke (’00)
CWB, Fleming, Pirjol, Stewart (’00)
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Soft-Collinear Effective Theory

SCET

CWB, Fleming, Luke (’00)

CWB, Fleming, Pirjol, Stewart (’00)

For two jets, have two collinear directions

Type (p.p.p) Fields
collinear 1 (3 1, A) A
collinear 2 (1, 22 2) xn2, Pn2

soft S qs, As
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Soft-Collinear Effective Theory

Formal
understanding of
QCD

Fixed order
calculations

Resummed
calculations

~
Frrrrrsrs .1
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. heavy lon collisions

SC ET CWB, Fleming, Luke (’00)

CWB, Fleming, Pirjol, Stewart (’00)

Proqfs (.)f Jet substructure Event generation
factorization g
Jet quenching in Parton distribution

Flavor physics functions

.....................................................................................................................................................................

Non-global

logarithms - Quarkonia physics Parton showers
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Soft-Collinear Effective Theory
SC ET CWB, Fleming, Luke (’00)

CWB, Fleming, Pirjol, Stewart (’00)

Formal  Proofs of

understanding of | ] ] Jet substructure Event generation
QCD  factorization | |
Fixed order - Jet quenching in . . Parton distribution
. g e g Flavor physics .
calculations . heavy lon collisions functions
Resummed Non—global Quarkonia physics Parton showers
calculations logarithms ; 5
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Effective theories allow to separate short and long
distance physics from one another

Goal is to separate ingredients that are calculable in perturbation theory from
those that really benefit from non-perturbative techniques

Effective Field Theories (SCET)

d6=H®J ®..®J &S

Most interesting object in above equation is the soft function .S, which as
discussed lives at the lowest energies

For 1TeV jets with 100GeV mass, find
Ag = (100 GeV)?/(1000 GeV) = 10 GeV

~
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Other ideas to compute part of a full scattering process
have been put forth in slightly different contexts

* |Implement parton shower evolution on quantum devices
* Include classically intractable quantum interference effects

CWB, dedJong, Nachman, Provasoli ('18)

 Compute light-front matrix elements (parton distributions) on quantum
devices
e Compute PDFs from first principle

Echevarria, Egusquiza, Rico, Schnell ('21)

~
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Let’s try to estimate the resources we need to simulate
physics at the LHC

Energy rage that can be described by lattice is given by

1 1
— <E<-—
NI [

As | will argue later, can use effective field theories to limit required range to

100MeV < E <10GeV

This needs O(100°) ~ 10° lattice sites

Dimension of Hilbert space is
3210 © oo

6 14
While 321" <« 32107
still completely impossible to perform such a calculation
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it il Computations on a
> Quantum computer
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Quantum Algorithms for Quantum
Field Theories

Stephen P. Jordan,** Keith S. M. Lee,” John Preskill?

Quantum field theory reconciles quantum mechanics and special relativity, and plays a central
role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering
probabilities in a massive quantum field theory with quartic self-interactions (¢* theory) in
spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles,
their energy, and the desired precision, and applies at both weak and strong coupling. In the
strong-coupling and high-precision regimes, our quantum algorithm achieves exponential
speedup over the fastest known classical algorithm.

Science 336 (2012) 1130
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The resources on a quantum computer are much smaller,
but still very large

From the discussion before, size of Hilbert space to simulate full LHC given by

dim(H) ~ 3210"

This Hilbert space can be encoded In

ny = In, |dim(H)| ~ 5 x 10"

While this is much, much smaller, still inconceivable to have a system of
this size in any of our lifetimes
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Crucial thing to realize is that we don’t need quantum
computer for most of this physics

First, for most observables not interested in the most general high energy
process (typically care about events with relatively small number of jets)

Second, perturbation theory works very well for high energy processes with
limited number of final state particles

Should use Quantum Computers only for those calculations that are not possible
using known techniques

Combine quantum computing with EFTs

~
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Soft function is the expectation value of a “Wilson line”
operator between initial and final state

Soft function can be written as

S= [(X|T[Y,Y]|Q) 2

Y = Pexp igJ ds ¢p(ns) ns = (5,0,0,5)
0
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Since soft function has much lower characteristic scale,
can potentially compute “easily” on quantum device

From the discussion before, size of Hilbert space to simulate soft function

dim(H) ~ 3210

This Hilbert space can be encoded In

ny = In, |[dim(H)| ~ 5 x 10°

It seems possible to perform such a calculation on a quantum device in a
realistic time scale

,m ﬂ Christian Bauer

BERKELEY LAB Quantum Computing for Colliders




A Wilson line is a relatively simple object on a lattice

Wilson line can be easily discretized on the lattice

Y, = Pexp [igdn 3 du(t = 1 — o)

Y1 =Pexp |—igéx Y ¢, (t =no— ;)

Use time evolution to change the time at each lattice point

TIY, Y]] = e % exp [ig 62 (Guyn, — Pug)] X €77 exp [ig 07 (Gunn 1 — Puy )]

X o0 X € tHox eXp |:’Lg 0x (¢xn0 o ¢xn0)] .

Alternate between exponential of field operator and Hamiltonian evolution
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice

YﬁY
4—?

~

;':n} ﬂ ¢ chris@h Bauer @

BERKELEY LAB Quantum Computing for Colliders

LN
& L L




A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice

o
® o o ® o ® _ ® ®
PN o o ® o ® _ ® ®
® ® o o o o o ® ®
® O ® o ® ® ® O ®

= 3/

® ® o o / ® ® ® ® ®
PN ® o ® o ® _ ® ®
PN o o ® o ® _ ® ®
PN o o ® o ® @ ® ®

n’f:;}ﬂ ‘ ‘ ‘ Chris‘1 Bauer ‘ ‘ ‘ ‘ i

BERKELEY LAB Quantum Computing for Colliders



A Wilson line is a relatively simple object on a lattice
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Soft function is the expectation value of a “Wilson line”
operator between initial and final state

S= [(X|T[Y,Y!]|Q) ‘2

Have worked out quantum circuit to create vacuum state | £2), circuit for T[YnY;]
and circuit to measure final state | X)

lo) +-

In-1)

N DN DS
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Constructing the relevant circuit is relatively

straightforward

Jordan, Lee, Preskill (
Somma (

Macridin et al (
Savage, Kico (’

Crucial simplification: this problem only requires Hamiltonian of free field theory

— YY) — A2
H=H,+H, Hy=¢*2, H,=#/2

T

Can move between ¢ and x basis via QFT
e’int _ QFT—I ei&v tqb? QFT

and express qb operator through Z operators

Z 2] (3)

Entire Hamiltonian therefore determin‘e<>j In terms of

/).

ng—1lng—1 i

exp [i@gbiqb]} H H exp{ 2(l+k)90g2 i’ﬂ =
=0 k=0 k). l
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Constructing the relevant circuit is relatively
straightforward

Exponential of field operator
CWB, Freytsis, Nachman ('21)

Much simpler to implement, using similar technique as for Hamiltonian

|()>Z, R 2 ——
ng—1
explifo;] = H exp {2239022} =
§=0
ng — 1), o —i2ne oz 1

Put together, allows to implement the whole Wilson line operator
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Soft function is the expectation value of a “Wilson line”
operator between initial and final state

S = |(X|T1Y,Y!]|Q) ‘2

Have worked out quantum circuit to create vacuum state | £2), circuit for T[YnY;Z]
and circuit to measure final state | X)

In_1) + A
f:hm Christian Bauer
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Constructing the relevant circuit is relatively

straightforward

Kitaev, Webb (’08)

CWB, Deliyannis, Freytsis, Nachman (in preparation)

Ground state of scalar field theory given by multivariate Gaussian

L -
U) = exp _§¢iGij¢j

ko) 1K),

The covariance matrix G;; can be diagonalized
G = MDM", where D is diagonal and M upper triangle matrix

General process is therefore to proceed in two steps

1. Prepare set of uncorrelated Gaussians with widths determined by D
2. Switch basis by applying M (a shearing operation)

~
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Constructing the relevant circuit is relatively
straightforward

Kitaev, Webb (’08)
CWB, Deliyannis, Freytsis, Nachman (in preparation)

1. Prepare set of uncorrelated Gaussians with widths determined by D
- Classical complexity scales as N exp(n¢)
- Quantum algorithm exists that has polynomial scaling Np(r,,)

- Requires to perform relatively complicated quantum arithmetic
- Since 1, not large, most efficient to use exponential algorithm?

b no=2
-2
10 . nee3

104, == . . no=4
10—6_
10—8: .........

Fractional Error in Eigenvalue
AR
o O O
FORP SRS

I
=
o

N

1 2 3456 7 8 9101112131415

— Eigenvalue
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Constructing the relevant circuit is relatively
straightforward

Kitaev, Webb (’08)
CWB, Deliyannis, Freytsis, Nachman (in preparation)

1. Prepare set of uncorrelated Gaussians with widths determined by D
- Classical complexity scales as N exp(n¢)
- Quantum algorithm exists that has polynomial scaling Np(n¢)

- Requires to perform relatively complicated quantum arithmetic
- Since ny typically not very large, might be most efficient to simply

create classically computed state

2. Switch basis by applying M (a shearing operation)
- Classical complexity scales as exp(Nn¢)
- Quantum algorithm exists that has polynomial scaling p(Nn¢)

- Since N typically large, imperative to use much more efficient
quantum algorithm

~
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Soft function is the expectation value of a “Wilson line”
operator between initial and final state

S = |(X|T1Y,Y!]|Q) ‘2

Have worked out quantum circuit to create vacuum state | €2), circuit for T[YnY;_i]
and circuit to measure final state | X)
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Constructing the relevant circuit is relatively
straightforward

Jordan, Lee, Preskill ('12)

1. Given the ground state of the theory, can obtain excited state by
acting with creation operator.

Not a unitary operation, but can be implemented using ancillary quit
Complexity scales as p(Nn)

W N

~
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Soft function is the expectation value of a “Wilson line”
operator between initial and final state

S = |(X|T1Y,Y!]|Q) ‘2

Have worked out quantum circuit to create vacuum state | €2), circuit for T[YnY;_i]
and circuit to measure final state | X)
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Soft function is the expectation value of a “Wilson line”
operator between initial and final state

o) A

...y HUq Uy H UL HA

IN_1) F A
Steps to simulate the soft function S:

Start with all qubits in |0) state
Apply operator U, creating ground state |2) of the field QFT

Apply the operator Uy = T[Y;:Yn]
Perform the inverse of Uy creating state | X)
Measure and count number of times all qubits are in | 0) state

o~ W=

~
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To know that we implement things right, need to be able to
cross check our results

State preparation and Hamiltonian evolution can be checked directly against
known result of free scalar field theory

7L Ustate [B_th} n UsTtate /74

1.0

Tos:
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Soft function is the expectation value of a “Wilson line”
operator between initial and final state

For a latticed scalar field theory, can in fact compute the required matrix elements
analytically

* Exponential of field operator related to coherent states

* Coherent states satisfy relation
Dp(0p) Do (Bp) = (21)% Dy (ap + Bp) € M@ P5)(35)

 Can use these results to obtain for example the ground state overlap

QT Y 0] = exp| -8 o1 O - 3 coslep(r — y))sin(n - p) sin(n-py)

x>y

e Several interesting effects, that | don’t have time to describe
* Mixed UV-IR divergences that only cancel in physical observables
e Absence of non-trivial IRC safe observables in 1+1 D

~
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In order to implement this on actual hardware, we need to
make the system very small

Use only three lattice sites

~
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In order to implement this on actual hardware, we need to
make the system very small

Use only three lattice sites
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In order to implement this on actual hardware, we need to
make the system very small

Use only three lattice sites

* Hamiltonian evolution produces only an overall phase, since it always acts on
initial or final state
Furthermore, use only 2 qubits per lattice site

o Shearing matrix M required for state preparation is trivial (identity), such that
covariance matrix is diagonal

Only 6 qubits required for simulation
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Soft function is the expectation value of a “Wilson line”
operator between initial and final state

1 —— Analytic calculation
| Digitized calculations
0.6 I
nQ =1
nQ =2

~ 00 02 04 06 08 1.0
Coupling Constant, g

As expected, already with 2-3 qubits per lattice site get answers that are very
close to the analytical result

~
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Soft function is the expectation value of a “Wilson line”
operator between initial and final state

l.Ot o -
13 N 0.81 m
c G -
| - — i
S 550.6-
B> ]
v = _
% < 0.4 4 — Analytic Calculation ®
I: — . Digitized Calculation/Noiseless Simulation (Qiskit)

| M Raw Quantum (IBMQ)
0.21 @ Corrected Quantum (IBMQ) .
X =|p1)

oL —r—v—mep—_
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In summary, by combining effective field theories with quantum algorithms,
have the possibility to compute long distance effects in collider physics
from first principles.

1.

2.

BERKELEY LAB

Full simulation of scattering processes can be described by matrix
evolution by discretizing space

Energy range that needs to be described determines number of lattice
points

Performing this matrix evolution is completely intractable using classical
algorithms, due to exponential scaling

Even using most efficient quantum algorithms with polynomial scaling
requires completely unrealistic resources

Using effective theories can limit problem to the energy range that is
not accessible using known technigues

Requires much smaller energy range and therefore much smaller
quantum resources

Have shown that the most novel ingredient in EFT framework can
indeed be computed using quantum algorithms

Christian Bauer
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In summary, by combining effective field theories with quantum algorithms,
have the possibility to compute long distance effects in collider physics
from first principles.

While this has shown that the relevant EFT calculations are possible, much
more work required for real world applications

1. Calculation done for
Implementation { heories

2. Only co plest overlaps
Work general state preparation

3. C@tion done in bare theory:

Think carefully about renormalization in EFT

ltems 1. and 2. are already in progress, starting to think about 3.
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