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Introduction

Objective:
Present and analyze various Finite Element (FE) formulations

for modelling HTS and their implementation in .
We will follow the GetDP philosophy:

» we will focus on building the weak form,

» and exploit the flexible function space possibilities,
specifically for global variables.

= we will cover technical details.

Important remark:
One does not have to deal with these details for running

on existing templates (e.g. using Onelab).

Details are however fundamental for investigating new models
and/or understanding the code.
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Outline

Simple finite element formulations
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Outline

Simple finite element formulations
Problem definition
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Magnetodynamics

» In the modelled domain, magnetodynamic (quasistatic)
equations

divb=0, curlh=j, curle= —a,b,\

with

b, the magnetic flux density (T),

h, the magnetic field (A/m),

Jj» the current density (A/m?),

e, the electric field,

(the displacement current d,d is ignored).

» Need constitutive relationships relating b to 2 and e toj.
» Need boundary conditions (BC).
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Constitutive laws

1. High-temperature superconductors (HTS):

le=p(lil)j_and b=poh|
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where the electrical resistivity is
given as

ol = 5= (1 ”)nl
Je \ Je ’

with e. = 10~* V/m,

Jje, the critical current density,
n, the flux creep exponent,

n € [10, 1000].

C.J.G. Plummer and J. E. Evetts, IEEE TAS 23 (1987) 1179.
E. Zeldov et al., Appl. Phys. Lett. 56 (1990) 680.
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Constitutive laws
2. Ferromagnetic materials (FM):

1

b=p(b)h and j=0.]|

Typical values (supra50):

oM|-- > initial relative permeability
Mri = 1700,
= > saturation magnetization
= ,U,()M =13T.
\uo P Eddy currents are neglected.
gl
3. Air:

|b=poh and j=0.
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Constitutive laws, extensions

One can also consider
» normal conductors and coils,
> permanent magnets,

» ferromagnetic materials with hysteresis,
Jacques, K. (2018). Doctoral dissertation, University of Liege.

> type-l superconductors (need a London length).

8/78



Boundary conditions and global variables

Domain €2 decomposed into:
> ., the conducting domain
(QC = Uf'V:IQCi)s
> QF, the complementary
non-conducting domain.

Boundary conditions are of two types:
1. Local conditions. On domain boundary 02 =T':
> hxn=hxn,imposedon |,
> exn=exn(orb-n=>b-n),imposedonl, (=T\I',).
2. Global conditions. Either the applied current 7;, or voltage
V; is imposed (or a relation between them, not covered
here) on each separate conducting region €2,

» [, = I;, imposed for i € C;, a subset of C = {1,...,N},
> V;, =V, imposed for i € Cy, the complementary subset.
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Summary
» Equations in Q:

‘div b=0, curlh=j curle=—-0b.

» Constitutive laws:

le=pi, b=uh|
» Boundary conditions:

(h —h) xnlr, =0, (e—é&) xn|p, =0,
I;=1ILforic C;, V;=VforiecCy.
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Finite element formulations
solves the problem with the finite element method.

Two classes of formulations:

» h-conform, e.g. ,
> enforces the continuity of the tangential component of A,
> involves e = pj and b = uh,
» much used for HTS modelling.

» b-conform, e.g. | a-formulation |,

> enforces the continuity of the normal component of b,
> involvesj =ceandh=vh, (c=p ', v=p"})
> much used in electric rotating machine design.

Nonlinear constitutive laws involved in opposite ways = very
different numerical behaviors are expected. .. and observed.
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Differential forms

In| GetDP |, we discretize the fields as differential k-forms.
The exterior derivative d applied on a k-form gives a k + 1-form.

» 0O-form, (e.g. ¢,v):
» continuous scalar fields (conform),
» generated by nodal functions 1,
value (point evaluation) at node i = 9,3,
> exterior derivative is grad .
» 1-form, e.g. h,e, (a,t):
» vector fields with continuous tangential trace (curl-conform),
> generated by edge functions .,
circulation (line integral) along edge e = ¢z,
> exterior derivative is curl .
» 2-form, e.g. b,j:
> vector fields with continuous normal trace (div-conform),
> generated by facet functions 1,
flux (surface integral) through facet f = 4,5,
> exterior derivative is div .
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Differential forms - lllustration
Edge functions (1-form fields) for a linear triangular finite element:

v

Edge 2

Their curl (2-form fields) are constant.
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Outline

Simple finite element formulations

The a-formulation
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Derivation of the |a-formulation|
Introduce the vector potential a, and the electric potential v:

b = curl a, e = —0a — grad v.

Define a in Q and v in €. (discontinuous across electrodes):
» g as a 1-form and v as a 0-form,
» satisfying the local BC (e —e) x n|r, = 0,
» and global BC V; = V; for i € Cy (i.e. the circulation of
—grad v around conducting domain €2, is equal to V;).
This strongly satisfies

divb=0, curle=-9b, (e—ée)xn|r,=0, V,=VforieCy.

What remains (and will be imposed weakly) is:

curlh =j, j=oe, h=vb, (h—h)xnlp, =0, I=1IforiccC.
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Choosing a and v
We still have freedom on the choice of a and v. Indeed, for any
scalar field ¢, the substitution
t
a%aJr/ grad ¢ dt
0
Vov—20¢
lets the physical solution, b and e, unchanged.

We present here one possibility for gauging @ and v in:
(1) 2D case with in-plane b, (2) 3D case.

In both cases, one global shape function v, ; in each €, is
sufficient for representing a unit voltage in €2, s.t. we have:

N
grad v = Z Vigrad vy ;.
i=1
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Choosing a and v, contd

N
b =curla, e = —0a — grad v, grad v = Z Vigrad v, ;
i=1
1. 2D with in-plane b:

» We choose a along z,

a= Zan YuZ,

nel

with ¢, the node function of node n.
NB: It is a Coulomb gauge diva = 0.

» grad v, ; is along z and constant (= 1) in
each (. (V is a voltage per unit length.)

»> Remaining constant fixed by BC.
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a in 2D, with in-plane b

a = Zan VnZ,

nes)

FunctionSpace {
// Perpendicular edge functions (1-form field in the out-of-plane direction).
{ Name a_space_2D; Type FormiP;
BasisFunction {
{ Name psin; NameOfCoef an; Function BF_PerpendicularEdge;
Support Omega.a-AndBnd; Entity NodesOf[ All]; }

Constraint {
{ NameOfCoef an; EntityType NodesOf; NameOfConstraint a; }
¥
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GetDP | grad v in 2D, with in-plane b

N N
grad v = Z Vigrad vg; = Z Vizi
i=1 i=1

FunctionSpace {
{ Name grad_v_space_2D; Type FormiP;
BasisFunction {
// Constant per region and along z. Corresponds to a voltage per unit length.
{ Name zi; NameOfCoef Vi; Function BF_RegionZ;
Support Region[OmegaC]; Entity Region[OmegaC]; }

}

GlobalQuantity {
// Associated global quantities to be used in the formulation.
{ Name V; Type AliasOf; NameOfCoef Vi; }
{ Name |; Type AssociatedWith; NameOfCoef Vi; }

Constraint {
{ NameOfCoef V; EntityType Region; NameOfConstraint Voltage; }
{ NameOfCoef |; EntityType Region; NameOfConstraint Current; }
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Choosing a and v
2. 3D:

> In €, define v, ; to be zero
everywhere except on a transition
layer in §),: layer of one element, on
one side of the electrodes, in each
Q., (v has no longer a physical
interpretation),

N

grad v = Z Vi grad vy ;.
i=1

> ais generated by edge functions.

> In ), ais unique, e.g. outside the
transition layer, e = —0,a (reduced
vector potential).

> In QS, a is made unique with a
co-tree gauge. . .
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Co-tree gauge for a in Q¢ in 3D
> In QF, only curl a = b has a physical meaning. One DOF
per facet is sufficient (and necessary), instead of one DOF
per edge.
» The support entities of the 1-form a are the edges.
» To associate a unique edge to each facet: consider only
edges in a co-tree, i.e. the complementary of a tree:

a—= Z de Q/’e-

e€Q.U(co-tree in QF)

NB: Be careful on the conducting domain boundary 82, no gauge there because a is already unique.
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‘GetDP|a in 3D
a = Z ae"/’e

e€QcU(co-tree in QF)

FunctionSpace {
{ Name a_space.3D; Type Formi;
BasisFunction {

// Usual edge functions everywhere (decomposed to handle BndOmegaC) correctly

{ Name psie ; NameOfCoef ae ; Function BF_Edge ;
Support Omega.a_AndBnd ; Entity EdgesOf[ All, Not BndOmegaC ] ; }

{ Name psie2 ; NameOfCoef ae2 ; Function BF_Edge ;
Support Omega-a_-AndBnd ; Entity EdgesOf[ BndOmegaC ] ; }

Constraint {
{ NameOfCoef ae; EntityType EdgesOf; NameOfConstraint a; }
{ NameOfCoef ae2; EntityType EdgesOf; NameOfConstraint a; }
{ NameOfCoef ae; EntityType EdgesOfTreeln; EntitySubType StartingOn;
NameOfConstraint GaugeCondition; }

1

Constraint {
{ Name GaugeCondition ; Type Assign ;
Case {
// Zero on edges of a tree in Omega_CC, containing a complete tree on Surf-a_noGauge.
{Region Omega_a.OmegaCC ; SubRegion Surf.a_noGauge; Value 0.; }

22/78




‘GetDP|v in 3D

N
grad v = Z Vi grad vy ;

i=1

FunctionSpace{
{ Name grad_v_space_3D; Type Formi;

BasisFunction {

// Global unit voltage shape function. Support limited to only one side of the electrodes.

{ Name vi; NameOfCoef Vi; Function BF_GradGroupOfNodes;
Support ElementsOf[OmegaC, OnPositiveSideOf Electrodes];

Entity GroupsOfNodesOf[ Electrodes]; }

s
GlobalQuantity {
// Associated global quantities to be used in the formulation.

{ Name V; Type AliasOf; NameOfCoef Vi; }
{ Name |; Type AssociatedWith; NameOfCoef Vi; }

Constraint {
{ NameOfCoef V;
EntityType GroupsOfNodesOf; NameOfConstraint Voltage; }

{ NameOfCoef 1;
EntityType GroupsOfNodesOf; NameOfConstraint Current; }

}
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Choosing a and v, other possibilities

Many other possibilities can also be implemented in 3D.

Examples:
» Distributed support for v, via a preliminary FE resolution.

[S. Schéps, et al. (2013) COMPEL: The international journal for computation and mathematics in electrical

and electronic engineering, 2013.]

» Coulomb gauge in QS via a Lagrange multiplier.

Creusé, et al. (2019). Computers & Mathematics with Applications, 77(6), 1563-1582.
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, cont’d

Derivation of the |a-formulation
What remains is:

©)
curlh =j, j=oce, h=vb, (h—h)xn|r,=0, L=ILforiccC
N—————

= curl (v curl @)=—o (Ba+grad v) X @

» Multiply ® by a test function a’, in the same space than a
but with homogeneous BC, and integrate over 2,

(curl (vcurla) ,a'), + (0 (0a + gradv) ,a'), =0

= (veurla,curld’), — (veurla xn , a')p,
—— ———
natural BC ©

+ (0 0a @) + (o grad v ,a)g =0

Q
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Derivation of the |a-formulation|, cont'd

What remains is:

©
curlh =j, j=oce, h=vb, (h—h)xn|r,=0, L=ILforiccC
N—————

= curl (v curl @)=—o (Ba+grad v) X @

» Multiply ® by a test function grad v/, and integrate over ¢,

(curl (vcurla) ,gradv'), + (0 0a ,grad V'),
+ (o grad v , grad v’)Qc =0
= —(veurla xn ,grad V/>BQC + (0 0a , grad V')

®..

+ (o grad v, grad v’)QC =0

Qe
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, cont’d

» The surface term simplifies

veurla x n ,grad v
( )

0

d(transition layer)

Ampere’s law + @).
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\a-formulation|

Finally, the amounts to find @ and v in the chosen

function spaces such that, Va’ and v/,

(veurla ,curld’), — (h x nq ,a'>Fh
+ (0 0a ,a’)QC + (o grad v ,a’)QC =0,
N
(00 ,grad V') QT (ocgrad v, grad V) 0 = ZIiV,-(v’),
i—1
with I; = 71' fori e Cy,

and V;(v') = V! (i.e. the DOF associated with the unit voltage
function vz ;).
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\a-formulation| - Interpretation

When the test function v/ = v,; is chosen (Vi(vq4,;) = 1), the
second equation reads

(0 (O +gradv) ,grad vy;),, =1

= (ce,—grad vg;), =1

c

"Flux of oe (=j) averaged over a transition layer = total current”.

NB: The flux of oe depends on the chosen cross-section as ce is not
a 2-form (asj should be). Conservation of current is weakly satisfied.
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Outline

Simple finite element formulations

The h-formulation
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Derivation of the
Choose h such that
> itisa 1-form,
» (h—h) xn|p, =0,
» curl & = 0in QF (this is the key point),
» and express j directly as j = curl & in Q, with & generated
by edge functions.

What are the functions k that satisfy curl & = 0 in Q$?
= Surely gradients of scalar functions!
> If h = grad ¢, then curl h = 0, V¢.
» However, choosing only & = grad ¢
does not allow to represent a net
current intensity (necessary if QS is
multiply connected).

» We need additional functions. ..

$(grad ¢) - de =0
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Derivation of the , cont’d

» One global shape function ¢; for
each €, is enough for representing
a unit current intensity in €.

> As with the , we have

freedom on the choice of these
functions. The only constraint is that

% Cj -db = (5,1
Ci

In QF, we therefore have

N
h = grad ¢ + Zlici'
i=1
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Choice of the global functions

One possibility for choosing the ¢; functions, the functions:
> Introduce to make QS simply connected.

» Define the ¢; on : layer of one element on
one side of the cut, for each cut.

> c; = grad ¢4, with ¢,; a discontinuous scalar potential.

NB: Gmsh has an automatic cohomology solver for generating
cuts in complicated geometries (e.g. helix windings).
[M. Pellikka, et al. SIAM Journal on Scientific Computing 35(5), pp. 1195-1214, 2013.]
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Summary and shape function supports

In 2 we have
h=) éngrad gy + h¢e+§jlcl
neNs €0\
Gradient of node Classical edge Global cut function.
functions. functions. Net current # 0.

Note: Gray areas = €.
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‘GetDP |k in 2D or 3D

N
h=>" ¢ugradv+ > hetpe+ Yy Iici

neqQs e€Q: N\, i=1

FunctionSpace{
{ Name h_space; Type Formi;
BasisFunction {
// Nodal functions
{ Name gradpsin; NameOfCoef phin; Function BF_GradNode;
Support Omega_-h.OmegaCC.AndBnd; Entity NodesOf[OmegaCC]; }
{ Name gradpsin; NameOfCoef phin2; Function BF_GroupOfEdges;
Support Omega-h.-OmegaC; Entity GroupsOfEdgesOnNodesOf[BndOmegaC]; }
// Edge functions
{ Name psie; NameOfCoef he; Function BF_Edge;
Support Omega-h.-OmegaC_AndBnd; Entity EdgesOf[ All , Not BndOmegaC]; }
// Cut functions
{ Name ci; NameOfCoef li; Function BF_GradGroupOfNodes;
Support ElementsOf[Omega_h.-OmegaCC, OnPositiveSideOf Cuts];
Entity GroupsOfNodesOf[Cuts]; }
{ Name ci; NameOfCoef |i2; Function BF_GroupOfEdges;
Support Omega-h-OmegaC-AndBnd;
Entity GroupsOfEdgesOf[Cuts, InSupport TransitionLayerAndBndOmegaC]; }

}
GlobalQuantity {

{ Name | ; Type AliasOf ; NameOfCoef i ; }

{ Name V ; Type AssociatedWith ; NameOfCoef i ; }
Constraint {
[...]}
{1}

i3
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Dealing with global variables, other possibilities

Many other possibilities can also be implemented.

Examples:
» Winding functions (= see Erik Schnaubelt talk tomorrow),

[S. Schops, et al. (2013) COMPEL: The international journal for computation and mathematics in electrical
and electronic engineering, 2013.]

> Large resistivity (~ 1 2m) in QS and integral constraint on
the current (simple but much more DOF).

[Shen, B., et al. (2020). IEEE access, 8, 100403-100414.]
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Derivation of the , cont'd
With the chosen k, we strongly satisfy

curl 2 =], (h—iz)xn]ph:0, Il-zfiforieC[.

What remains (and will be imposed weakly) is:

divb=0, curle=—-0b, e=pj, b= puh,
(e—é)xn]pe:0, Vi:V,-forieCV.

We model an external applied
voltage V by a localized e, field
in a modified Ohm’s law:

e=e,+pj, @

with e, = Vi (€ — &€x)n so that
we globally have a net E.M.F.

(6(-) is the Dirac distribution)
NB: Also see [Geuzaine, C. (2001). Phd thesis.]
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Derivation of the , cont’d
What remains is:

= curl (pcurl h)+curl e;=—0;(uh) @

divb=0, curle=-0b, e=e,+pj, b=puh,
(e—é)xnp(,:(), Vi:VifOf'iGCV.

© ®

» Multiply ® by a test function #’, in the same space than k
but with homogeneous BC, and integrate over (2,
(0i(uh) '), + (curl (pcurl b) \h'), + (curle, ,h'), =0,

= (0(uh) '), + (pcurl b curl h/)QC + (ea ,curl h/)Qc
~———

D...

—{(ea +peurlh) xn , k'), =0
natural BC ©
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Derivation of the , cont'd
» The third term simplifies

(ea ,curl k'), =V (3(€ —&s)n ,curl '),
=V{(n, curl h')

—V% K -de
[)))

=vI'=vI'  (Ampeére’s law + D).
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Derivation of the , cont’d

What about div b = 07
» Taking k' = grad ¢’ in the formulation yields

(0i(uh) ,grad ¢'), + (curl (e, + pcurl h) ,grad ¢'), = 0,
= — (div (9i(uh)) ,¢') o, + (Or(ph) -n '),
— (e xn ,grad ¢'>Fe =0.

One can show that (0,(uh) -n ,¢') = (e x n ,grad ¢') ,
so with (e —e) x n|r, = 0, what remains is

at( (div (k) ,¢’)Q) _0,

such that div b = 0 is (weakly) verified if the initial condition
hy, is such that (div (phy,) ,¢') = 0.
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Finally, the amounts to find A in the chosen
function space such that, V#/,

(O(uh) ,h') ¢, + (peurl b, curl B')
N

—(exn b)), + > Vi) =0,
i=1

with V; = Vi fori e Cy,
and Z;(h’) = I (i.e. the DOF associated with the cut function ;).
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- Interpretation

When the test function ¢; (Z;(¢;) = 1) is chosen, we get the
equation:

(Or(ph) ,ci)q + (peurl b curl ¢;)q = —V;.

"Flux change ph (= b) + circulation of pj (= e),
both averaged over a transition layer = total voltage”.

NB: The flux of uh depends on the chosen cut as pk is not a 2-form
(as b should be). Same for pj.
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Structure of the resolution

> After spatial discretization, we get time-varying and
non-linear matrix systems,

Ax,t)-x =b(r),
where x = (a,v) or x = (h).
» Resolution: two imbricated loops.
> Time-stepping: Implicit Euler with adaptative time steps;

> lterative solution of the non-linear system:
Newton-Raphson or fixed point (Picard).
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Outline

Resolution techniques
Time integration
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Implicit Euler

Time derivatives at time step ¢, are explicitly expressed as:

du, . u(ty) —u(ty—1)
@M=" A

with u(z,) containing the DOF and u(z,_;) being known.

Other possibilities can be implemented:
» Explicit Euler,
» Crank-Nicholson,
» Higher-order schemes...
= Just explicitly write the scheme in the formulation.
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GetDP | Implicit Euler in the formulation

Syntax:
» Dof{h}: DOF at the current time step n (and iteration),
» {h}[i]: saved/known solution of k at time stepn — 1,
» {h}: solution at the previous iteration (see later).

Example: flux variation term (9;(uh) k'), in

(50),- (%0
At Q At Q
Formulation {

{ Name MagDyn_htot; Type FemEquation;
Quantity {
{ Name h; Type Local; NameOfSpace h_space; }
{01}

¥
Equation {
// Flux variation term (on the linear magnetic domain)
Galerkin { [ mu[] = Dof{h} / $DTime , {h} ;
In MagnLinDomain; Integration Int; Jacobian Vol; }
Galerkin { [ — mu[] = {h}[1] / $DTime , {h} ];
In MagnLinDomain; Integration Int; Jacobian Vol; }
[...]
¥
}
}

47/78




Adaptive time-stepping

Solve Ax =b
with a timestep At

]

# iterations > iy
or
no convergence?

yno

Convergence in less
than i, iterations ?

no

Reduce timestep:
At :=yAt,y > 1

yes

yes

]
Increase timestep:

At := min(SA, Atyax)
with 8 > 1

Parameters:

>

>
>
>

v

v=1/2

B=2

ifast — imax/4
Fixed-point:

Imax = 400
Newton-Raphson
imax = 50
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Adaptive time-stepping in resolution

Resolution {
{ Name MagDyn;
System { {Name A; NameOfFormulation MagDyn_htot;} }
Operation {
[...]

// Initialize
SetTime[ timeStart ]; SetDTime[ dt ]; SetTimeStep[ 0 ];
// Overall time loop
While [$Time < timeFinalSimu && $DTime > 1e—10]{
SetTime[ $Time + $DTime ]; SetTimeStep[ $TimeStep + 1 |;

// Customized iterative loop
Call CustomlterativeLoop;

// If converged (= less than iter max and not diverged)...
Test[ $iter < iter_max && ($res / $res0 <= 1e10)]{
SaveSolution[A];
Test[ $iter < iter_max / 2 && $DTime < dt_max]{
Evaluate[ $dt-new = Min[$DTime = 2, dt-max] ];
SetDTime [ $dt_new ];

// ... otherwise, decrease the time step and start again

RemovelastSolution[A];

Evaluate[ $dt-new = $DTime / 2 |;

SetDTime [ $dt_new ];

SetTime[$Time — $DTime]; SetTimeStep[$TimeStep — 11];
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Outline

Resolution techniques

Linearization methods
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Solving a non-linear equation: f(x) = b

1. Picard iteration method (a fixed point method):

f(z) = Alz)z A > Write f(x) as f(x) = A(x)x.
s > Get a first estimate xo.
b - — > At each iteration i
= ¥ oo > solve A(xi—i)x=b
- . solve A(x;_ ,
A('THI)'T;’/ P Az ' > xi=ux,
R S E » i:=i+1and loop.
. . . » Stop when convergence
T Tito Tig criterion is met.

» May converge for wide range of first estimates x.
» Convergence is slow!
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Solving a non-linear equation: f(x) = b

2. Newton-Raphson iterative method:

f(z) = Alz)z > Get a first estimate xy.
p » At each iteration i, solve for x;:

b < df
8 P =~ (x: L X _ . .
= S dx(xl—l)(xl xi1) = f(xi-1)

. » Stop when convergence

| o criterion is met.

l"t Zﬂi+‘2 .le

» Quadratic convergence, if the initial est. x, is close enough.
» Relaxation factors can also be implemented.
> If x is a vector, % is a matrix (Jacobian matrix). ..
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Jacobian for isotropic constitutive laws
» Consider a constitutive law of the form
alx) = g(|x[)x.
Example: e = pj,orb = ph, ...
» The Newton-Raphson expansion can be cast in the form

a(x’) ~a(x™") + ) (¢ — 2T,

where J is the 3 x 3 Jacobian matrix (i is the iteration index):

o de(l=|)
L= 5. .
U= 5 = Ss(bel) + s 5

Examples in: Dular, J., et al. (2020) TAS 30 8200113.
> Example: (pcurl &, curl &')g, in , with

curl h =j:
i—1y si—1 ’ Oe i1\ . / Oe i1
(o6 ) (G007 ') (G0

c

,curl h/)
Qe
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GetDP | Picard and Newton-Raphson in formulation

Example: nonlinear term (pcurl & , curl &'), in

. . e
. d—1y i—1 ’
N-R: (p(] )J ,curl i ) . + (—

oj

) ) de . )
(]'I_])j' ,curlh') — (—.(j'_l)j'_I 7curlh/)
Q oj Q

c

Formulation {
{ Name MagDyn_htot; Type FemEquation;
Quantity {
{ Name h; Type Local; NameOfSpace h_space; }
{0..1}

}
Equation {
// (1) Picard
Galerkin { [ rho[{d h}]] = Dof{d h} , {d h} |;
In NonLinOmegaC; Integration Int; Jacobian Vol; }

// (2) Newton-Raphson
Galerkin { [ rho[{d h}] = {d h} , {d h} I;

In NonLinOmegaC; Integration Int; Jacobian Vol; }
Galerkin { [ dedj[{d h}] = Dof{d h} , {d h} ];

In NonLinOmegaC; Integration Int; Jacobian Vol; }
Galerkin { [ — dedj[{d h}] = {d h} , {d h} ];

In NonLinOmegaC ; Integration Int; Jacobian Vol; }
[...]

11}

Syntax:
> {h}: solution of the previous iteration,

» {d h}: exterior derivative of h. Here for h it is its curl .
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First estimate

» We propose a series of possibilities:
x(t) x(t) x(t)

t J t J t
(a) Zeroth-order extrapolation (b) First-order extrapolation (c) Second-order extrapolation

In Resolution: | SetExtrapolationOrder[ n ]; |(n € N).

> |t can strongly affect the required humber of iterations!
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Convergence criterion

» The residual b — A(x;)x; is sometimes misleading.

» We choose the electromagnetic power, P, as a (global)
convergence indicator:

= (O(nh) ;h)g + (peurl b ,curl k),

a-formulation

P = (O(curla) ,vcurl a), + (e ,e)q_,

with e = —0,a — grad v.
» We stop when |AP/P| is small enough:

> ~ 10~ with Newton-Raphson,
> = 10~* with Picard.
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Outline

Resolution techniques

Comparison of the formulations
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Nonlinearity in HTS for dual formulations

e=pj |a-formulation|j = oe
f() = ol x + F0) ="+ x

— f(@)

Different nonlinearities = different numerical behaviors.
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Beware of cycles

Cycles can occur in each method, depending on the shape of
the function f(x):

Picard iteration on Newton-Raphson iteration on
Prefer Newton-Raphson! Prefer Picard!

Relaxation factors can help, but no efficient solution (that we know of).
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lllustration for a superconducting cube

System Current density distribution
h-form. 1171l (A/m2) a-form.
o Side a = 10 mm. e
‘ uohs = Z By sin(2xft),
with Bp = 200 mT,
f =50Hz,
je =10 A/m* and I T
n = 100. ”
Residual 107
> L, normofr=Ax—b S 7‘:?.
10* -
> Left: 107 \\ \
\
> Right: | a-formulation SR T <
10 0 1‘0 20 30 0 20 40 60 80
Iteration number ¢ Iteration number 4
(a) Newton-Raphson technique. (b) Picard technique.

= Much more efficient with Newton-Raphson (as is expected!).
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Conclusion for HTS

The diverging slope associated with j = ge forj — 0 is really
difficult to handle.

= Among the two simple formulations, the is
much more efficient for systems with HTS:

» with an adaptive time-stepping algorithm,
» solved with a Newton-Raphson method,
» with a first estimate obtained by 15'-order extrapolation.
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One particular case: "single time step”

» For large values of n, nearly a critical state model.

» Robustness of Picard on the j = ge law can help to reduce
the number of time steps.

3 0.15 [ : ‘ ‘
< 01} e ga-formulation |
S — :
= 0.05 | h-formulation |
.8
S o |
N
£—0.05 |- |
501} |
Z_0.15 x

—0.2 -0.1 0 0.1 0.2

Applied field hs/jca

> Here, for a magnetization cycle (3D cube problem)
» lines: with 300 time steps,

> dots: with 20 time steps = much faster!

> |n practice, accurate forj and b, but e is underestimated!
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Outline

Mixed finite element formulations
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Outline

Mixed finite element formulations
The h-a-formulation
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Ferromagnetic materials

The nonlinearity is in the magnetic constitutive law.
> the involved law is b = ph.

ol

= Easily enters cycles with Newton-Raphson.
OK with Picard, or N-R with relaxation factors but slow.

> the involved law is h = vb.

I/! ~ /)

= Efficiently solved with Newton-Raphson.

The is more appropriate for dealing with the

nonlinearity, whereas for HTS, the dual formulation was best.
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Coupled materials - | h-a-formulation|

| Use the best formulation in each material |

Decompose the domain 2, for example

into: P i ﬁ
> O = (HTS) WIS
» (O = {Ferromagnet, Air}

and couple via I'm; = 9(HTS):

(O(4ik) 1) o + (peurl b curl B)  + (Oa x noy h')p, =0,

(veurla ,curld’),, — (h x noa ,a)

211 Fm

(For homogeneous natural BC)

= see Erik Schnaubelt talk tomorrow
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| h-a-formulation | Results

Ferromagnet X
Example: — A S
> Stacked cylinders SN 1 N ST
» 2D axisymmetric Supereonauetr DL T 'Sﬁ}‘
» External applied field o : ARSI G5,

t

Number of iterations for three discretization levels:

|a-formulation| | h-a-formulation |

Coarse 1878 4381 1071
Medium 3366 7539 1931
Fine 4422 14594 3753

In general, a speed-up from 1.2 to 3 is obtained.
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| h-a-formulation | Stability

The formulation is mixed (two unknown fields on I'y)
= Shape functions must satisfy an inf-sup condition.

> First-order functlons for h and a (|nf sup KO)

:,:'/ / / Aty : \\ \\‘\\\
- ; // /// \\\ ‘:\
pE / G A Ferromagnet T35 ‘(\‘\ NN
P aas S S \/‘\‘\ AN
/// f;ffl |’ n\\ \‘\\\\
f’t”‘A' '.sHL§A\
» Second-order for a, first- order for h (|nf sup OK):
A T T R N
“x A el Ferroma net ‘\\ \\\ |~
/;/;/2’"/:”: = By \\:\S\\':\\
1 s N
/ f II’ (\
’ 4/’/;/ HTS \2:\ \k\
,'4" '.mHkiA\




GetDP | Hierarchical functions

Example for 2"-order shape functions for a (in 2D) on I':

FunctionSpace{
{ Name a_space.2D; Type FormiP;
BasisFunction {

// Usual first-order functions

{ Name psin; NameOfCoef an; Function BF_PerpendicularEdge;
Support Omega_a_AndBnd; Entity NodesOf[ All]; }

// Second-order functions on BndOmega_ha only

{ Name psin2; NameOfCoef an2; Function BF_PerpendicularEdge_2E;
Support Omega_a_AndBnd; Entity EdgesOf[BndOmega-ha]; }

Constraint {
{ NameOfCoef an; EntityType NodesOf; NameOfConstraint a; }
{ NameOfCoef an2; EntityType EdgesOf; NameOfConstraint a2; }

l Nl

NB: This is for a locally enriched function space. Using 2"-order elements on
the whole domain can be done directly at the meshing step.

Command for 2D:| gmsh geometry.msh -2 —order 2|
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Outline

Mixed finite element formulations

The t-a-formulation
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t-a-formulation|

HTS tapes -

To model thin superconducting tapes, two main possibilities:

1. Use the true geometry and the | /-formulation | with

one-element across the thickness (quadrangle).

2. Perform the slab approximation and model the tape as a

line = | -a-formulation .

RS

o2 RS
R AT
R S S L
R R R S R SR RO, <
R PR PO L
<DL QXN
2AYS AV TAVAN
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t-a-formulation|

Consider a tape T, of thickness w.

The current density is described by a
current potential ¢:

» such that j = curl ¢,

» gauged by being defined along
the normal of the tape, ¢ = n,

» with BC related to the total
current I (tt — 1 =1/w).

In ©2,,, write the and express the surface integral

(h x n ,a'). interms of the surface current density w curl ¢.
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-a-formulation|

Find @ and ¢ in the chosen function spaces such that, Va’,?,

(veurla ,curl a’)Q — (h x ng ,a’>F —(weurl ¢, a’>F =0,
(woa ,curl t’> + (wpcurl ¢, curlt') Z Vit
ieC
with V; = ‘7,' fori e Cy,
and Z;(¢') = I! (i.e. the DOF associated with the BC w(r™ —17)).

It is basically an ]h-a-formulation \ with a slab approximation.
See: [Bortot, L., et al. (2020). IEEE Trans. on App. Supercond., 30(5), 1-11].
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-a-formulation | - Stability

The ] t-a-formulation \ is mixed (two unknown fields on T',,)
= Shape functions must satisfy an inf-sup condition.

Similar conclusions than with the ] h-a-formulation \

Example for a 2D case, current density along the tape:

T T
1 — 18-order for @ and ¢

2nd_order for @ and 15t-order for ¢

jz/jc (')
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GetDP| Function space for ¢

Defined as a scalar quantity in the FunctionSpace, the
normal » is introduced in the formulation:

N
r= Z tn¢n+ZT,-€i, with ¢ = m.

nEFW'\GFW' i=1

FunctionSpace{
{ Name t_space; Type Form0;
BasisFunction {

// Node functions except on the lateral edges of the tapes.

{ Name psin; NameOfCoef tn; Function BF_Node;
Support Gammaw; Entity NodesOf[ All, Not LateralEdges]; }

// Global shape function for representing a net current intensity.

{ Name elli; NameOfCoef Ti; Function BF_GroupOfNodes;
Support Gammaw_AndBnd; Entity GroupsOfNodesOf[ PositiveEdges]; }

}

GlobalQuantity {
// Global quantities to be used in the formulation.
{ Name T ; Type AliasOf ; NameOfCoef Ti ; }
{ Name V ; Type AssociatedWith ; NameOfCoef Ti ; }

Constraint {
{ NameOfCoef V; EntityType GroupsOfNodesOf; NameOfConstraint Voltage; }
{ NameOfCoef T; EntityType GroupsOfNodesOf; NameOfConstraint Current.w; }
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Final remark - Interface with Onelab
One can use existing | GetDP | templates and models without

diving into the technical details.

In particular, we can use the Onelab interface. Example:

Function{
// Choose the formulation

Choices{
1="h—formulation”,
3="a—formulation (small steps)”,
4="h—a—formulation”},

// Superconductor parameters
DefineConstant [ec = 1e—4];
DefineConstant [jc = {3e8,

DefineConstant [n = {40,

Name ”"Input/5Method/0Preset formulation”

Name ”Input/3Material Properties/in (—

DefineConstant[preset = {4, Highlight "Blue”,

s

Name ”Input/3Material Properties/2jc (A/m2)”}];

)"}

yindercylinders pro_w] Model name
i fibiresolution.pro_v] Input fles
None ~] Model check
» Gmsh
v Input
v Geometry
™ Show geometry?
v Mesh

g Q| k| Mesh size mutipler (-

AT Properios

—r e L)

feros —:[o|lic (Am)

7% [l muratiow oiss ()

[ioie0s 2o )
w Problem o

™ Get solution during simulation?
v Source

Triangle Source field type.

ion

r Allow changes?
] s rumber ofteraton

y— | Relative tolerance ()

[OBBEBZI kx| Time step (s) 3
Run | #

S0XYZQu1S [k

NB: Interface via Python scripts is also possible.

Done meshing 2D (0.040436 5)

Z|
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Conclusion

We presented four formulations in | GetDP | :

]a—formulation \ \ h-formulation \ ] h-a-formulation \ ] t-a-formulation

and discussed their relevance for HTS modelling.

Full examples are available on Life-HTS and Onelab:
www.life-hts.uliege.be and onelab.info

Life-HTS

Liége university Finite Element models for High-Temperature Superconductors

This project contains model files for modeling systems containing high-temperature superconductors (HTS) with GetDP as a
finite element solver and Gmsh as mesh generator.

Files are available here.

Several finite element formulations are implemented together with various linearization methods and iterative procedures.
Simple models are proposed for practical applications (bulk and tapes HTS, coupling with ferromagnets...)

These models are developed at the University of Liége.

Cylinders model after magnetization.

Thank you for your attention!

77178


www.life-hts.uliege.be
onelab.info

Main references

> Onelab website, with codes, examples, and tutorials: onelab.info
> Life-HTS website: http://www.life-hts.uliege.be/

» Finite Element Formulations for Systems with High-Temperature
Superconductors,
J. Dular, C. Geuzaine, and B. Vanderheyden, TAS 30 (2020) 8200113.

» Stability of H-A and T-A Coupled Formulations,
J. Dular, M. Harutyunyan, L. Bortot, Sebastian Schops, B.
Vanderheyden, and C. Geuzaine (to be published).

> Modélisation du champ magnétique et des courants induits dans des
systemes tridimensionnels non linéaires,
P. Dular, thesis (1996) U. Liege.

» High order hybrid finite element schemes for Maxwell’s equations taking
thin structures and global quantities into account,
C. Geuzaine, thesis (2001) U. Liége.

» The FEM method for electromagnetic modeling,
G. Meunier ed., Wiley, 2008.
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