
GetDP Workshop
GmshFEM - future direction, High Performance Computing

Anthony Royer(1)

Joint work with: Eric Béchet(2) and Christophe Geuzaine(1)

(1) Université de Liège, Institut Montefiore B28, 4000 Liège (Belgium)
(2) Université de Liège, Département Aérospatiale et Mécanique B52, 4000 Liège (Belgium)

{anthony.royer, cgeuzaine, eric.bechet}@uliege.be

April 23th, 2021

Introduction

What is GmshFEM?
• GmshFEM is an open source C++ Finite Element library based on the

application programming interface of Gmsh (https://gmsh.info).

• Current status:
→ arbitrarily high-order Lagrange and hierarchical basis functions
→ scalar and vector fields (L2, H1, H(curl)) on hybrid, curved meshes
→ symbolic, general coupled formulations in 1D, 2D, 2D-axi and 3D
→ real and complex arithmetic, single or double precision
→ multi-threaded using OpenMP, linear algebra using Eigen and

PETSc, eigensolver using SLEPc
→ still only about 30k lines of C++

Public Git repository: https://gitlab.onelab.info/gmsh/fem

1 / 15

https://gmsh.info
https://gitlab.onelab.info/gmsh/fem

Introduction

What is GmshFEM?
• GmshFEM is an open source C++ Finite Element library based on the

application programming interface of Gmsh (https://gmsh.info).
• Current status:
→ arbitrarily high-order Lagrange and hierarchical basis functions
→ scalar and vector fields (L2, H1, H(curl)) on hybrid, curved meshes
→ symbolic, general coupled formulations in 1D, 2D, 2D-axi and 3D
→ real and complex arithmetic, single or double precision
→ multi-threaded using OpenMP, linear algebra using Eigen and

PETSc, eigensolver using SLEPc
→ still only about 30k lines of C++

Public Git repository: https://gitlab.onelab.info/gmsh/fem

1 / 15

https://gmsh.info
https://gitlab.onelab.info/gmsh/fem

Introduction

What is GmshFEM?
• GmshFEM is an open source C++ Finite Element library based on the

application programming interface of Gmsh (https://gmsh.info).
• Current status:
→ arbitrarily high-order Lagrange and hierarchical basis functions
→ scalar and vector fields (L2, H1, H(curl)) on hybrid, curved meshes
→ symbolic, general coupled formulations in 1D, 2D, 2D-axi and 3D
→ real and complex arithmetic, single or double precision
→ multi-threaded using OpenMP, linear algebra using Eigen and

PETSc, eigensolver using SLEPc
→ still only about 30k lines of C++

Public Git repository: https://gitlab.onelab.info/gmsh/fem

1 / 15

https://gmsh.info
https://gitlab.onelab.info/gmsh/fem

This talk

1. Strategic choices
2. Simple example:
→ Domain class
→ Function class
→ Field class
→ Formulation class
→ Post-processing functions

3. Assembly algorithm
4. Parallel efficiency
5. Conclusion and perspectives

2 / 15

Strategic choices

The design
The GmshFEM library is designed:

• to be fast and scalable ⇒ multi-core CPUs with SIMD instruction sets.

• to be light ⇒ easy to maintain and to integrate in third-part projects.
• to be user-friendly with a symbolic high-level description of weak

formulations
→ problems defined in a natural mathematical manner
→ amenable to scripting without pre- or re-compilation.

3 / 15

Strategic choices

The design
The GmshFEM library is designed:

• to be fast and scalable ⇒ multi-core CPUs with SIMD instruction sets.
• to be light ⇒ easy to maintain and to integrate in third-part projects.

• to be user-friendly with a symbolic high-level description of weak
formulations
→ problems defined in a natural mathematical manner
→ amenable to scripting without pre- or re-compilation.

3 / 15

Strategic choices

The design
The GmshFEM library is designed:

• to be fast and scalable ⇒ multi-core CPUs with SIMD instruction sets.
• to be light ⇒ easy to maintain and to integrate in third-part projects.
• to be user-friendly with a symbolic high-level description of weak

formulations
→ problems defined in a natural mathematical manner
→ amenable to scripting without pre- or re-compilation.

3 / 15

Simple example

•
Γext

Ωscat

•
Γscat

uinc

Ω

2D time-harmonic acoustic scattering (∆ + k2)u = 0 in Ω,
u = −uinc on Γscat,

∂nu + iku = 0 on Γext,

The weak form
The associated weak form is: Find u in H1(Ω) such that∫

Ω

(k2u v − grad u · grad v) dΩ−
∫

Γext

iku v dΓext = 0

holds for every test function v ∈ H1(Ω).

TikZ plane model from: https://github.com/sisl/aircraftshapes

4 / 15

https://github.com/sisl/aircraftshapes

Simple example

•
Γext

Ωscat

•
Γscat

uinc

Ω

2D time-harmonic acoustic scattering (∆ + k2)u = 0 in Ω,
u = −uinc on Γscat,

∂nu + iku = 0 on Γext,

The weak form
The associated weak form is: Find u in H1(Ω) such that∫

Ω

(k2u v − grad u · grad v) dΩ−
∫

Γext

iku v dΓext = 0

holds for every test function v ∈ H1(Ω).

TikZ plane model from: https://github.com/sisl/aircraftshapes

4 / 15

https://github.com/sisl/aircraftshapes

Simple example
→ Domain class

All the data related to the geometry, the mesh and the
topology is manipulated with the help of Domain objects.

•
Γext

•
Γscat

uinc

Ω

• Based on the notion of physical group in Gmsh:
→ created by a (dim, tag) integer pairs: e.g. domain::Domain omega(3,3);

→ created by a physical name: e.g. domain::Domain omega("omega");

• Binary operations of set algebra implemented through operators
overloading:
→ Union: e.g. domain::Domain union = domain1 | domain2;

→ Intersection: e.g. domain::Domain intersection = domain1 & domain2;

→ Complement: e.g. domain::Domain complement = ∼domain1;

domain :: Domain omega (3,3), gammaScat (2,1), gammaExt (2,2);

5 / 15

Simple example
→ Function class

All symbolic mathematical expressions are managed with
the help of Function classes (e.g. ScalarFunction,
VectorFunction or TensorFunction).

•
Γext

•
Γscat

uinc

Ω

• Manage scalar, vector or tensor functions and operations between them.
• Usual mathematical functions are readily available (e.g. sin, sqrt, ...).
• New functions can be added without modifying the library, going as far

as hard-coding the full terms necessary for e.g. assembling complex
weak formulation or post-processing computations.

uinc = e−ikx = cos(kx)− i sin(kx)

function :: ScalarFunction <std::complex <double >> duInc =
function ::cos(k * function ::x<std::complex <double >>()) -
im * function ::sin(k * function ::x<std::complex <double >>());

6 / 15

Simple example
→ Field class

The Field class is designed to store
information about a finite element field and its
associated discrete function space.

∫
Ω(k2u v − grad u · grad v) dΩ−∫

Γext
iku v dΓext = 0

• Is represented by any differential form and is templated on a scalar type
T_Scalar that could be any real or complex arithmetic field in both
single or double floating points precisions:
→ field::Field< T_Scalar, form::Form0 > form0Field;

→ field::Field< T_Scalar, form::Form1 > form1Field;

→ field::Field< T_Scalar, form::Form2 > form2Field;

→ field::Field< T_Scalar, form::Form3 > form3Field;

• Is constructed with a name, a domain of definition, a function space and
an order of interpolation if needed.

field ::Field <std::complex <double >, form::Form0 >
u("u", omega|gammaScat|gammaExt , functionSpaceH1 :: HierarchicalH1 , 6);

7 / 15

Simple example
→ Formulation class

The Formulation stores the symbolic
representation of the weak formulation of the
problem, and can evaluate linear and bilinear
forms, store the corresponding matrix systems,
and request their solution through external linear
algebra packages.

∫
Ω(k2u v−grad u ·grad v) dΩ−∫

Γscat
∂nuinc v dΓscat +∫

Γext
iku v dΓext = 0

problem :: Formulation <std::complex <double >> formulation("helmholtz");

using namespace gmshfem :: equation;

formulation.galerkin(- grad(dof(u)), grad(tf(u)), omega , "Gauss12");
formulation.galerkin(k * k * dof(u), tf(u), omega , "Gauss12");
formulation.galerkin(- im * k * dof(u), tf(u), gammaExt , "Gauss12");

formulation.pre();
formulation.assemble ();
formulation.solve ();

8 / 15

Simple example
→ Post-processing functions

Once a problem is solved, fields can be post-processed
using a variety of operations.

• Fields, or any function that involves fields, can be
saved easily.

• Integrals can be computed in one line of code.

•
Γext

•
Γscat

uinc

Ω

post::save(u, omega , "u");
post::save(function ::grad(u), omega , "grad_u");

9 / 15

Parallel efficiency

Acoustic waves

0 5 10 15
100

101

102

103

104

Number of threads

W
al
lt
im

e
(s
)

0 5 10 15

0.6

0.8

1

Number of threads
Pa

ra
lle
le

ffi
ci
en
cy

2nd order• • 4th order×× 6th order� �

10 / 15

Parallel efficiency

Electromagnetic waves

0 5 10 15
101

102

103

Number of threads

W
al
lt
im

e
(s
)

0 5 10 15

0.6

0.8

1

Number of threads
Pa

ra
lle
le

ffi
ci
en
cy

2nd order• • 4th order××

11 / 15

Parallel efficiency
Comparison with GetDP

Small problem
• Acoustic wave scattering problem.

• 1st order: 219,642 dofs

• 2nd order (curved) : 877,312 dofs

Ge
tD

P
Gm

sh
FE

M
1

th
re
ad

Gm
sh

FE
M

4
th

re
ad

s
Gm

sh
FE

M
16

th
re
ad

s

0
5

10
15
20
25
30
35
40

24
%

71
%

73
%

14
%

67
%

80
%

P
re

-
+

A
ss

em
bl

e
ti
m

e
(s

)

Bigger problem
• Acoustic wave scattering problem.

• 1st order: 1,366,438 dofs

• 2nd order (curved) : 5,462,612 dofs

Ge
tD

P
Gm

sh
FE

M
1

th
re
ad

Gm
sh

FE
M

4
th

re
ad

s
Gm

sh
FE

M
16

th
re
ad

s

0

50

100

150

200

250

27
%

71
%

80
%

16
%

68
%

80
%

P
re

-
+

A
ss

em
bl

e
ti
m

e
(s

)

12 / 15

Parallel efficiency
Comparison with GetDP

Adding a Perfectly Matched Layer (PML)

•
Γscat

uinc

Ω

PML
• Avoid reflections on the exterior

boundary
• Same purpose as the iku term
• It’s like a material property that

dissipates the wave

Weak form∫
Ω

(k2Eu v − D grad u · grad v) dΩ
��������
−
∫

Γext

iku v dΓext = 0

where E is a scalar and D is a tensor.

13 / 15

Parallel efficiency
Comparison with GetDP

Adding a Perfectly Matched Layer (PML)

•
Γscat

uinc

Ω

PML
• Avoid reflections on the exterior

boundary
• Same purpose as the iku term
• It’s like a material property that

dissipates the wave

Weak form∫
Ω

(k2Eu v − D grad u · grad v) dΩ
��������
−
∫

Γext

iku v dΓext = 0

where E is a scalar and D is a tensor.

13 / 15

Parallel efficiency
Comparison with GetDP

Small problem with PML (material property)
• Acoustic wave scattering problem with PML.
• 1st order: 219,642 dofs
• 2nd order (curved) : 877,312 dofs
Ge

tD
P

Gm
sh

FE
M

1
th

re
ad

Gm
sh

FE
M

4
th

re
ad

s

Gm
sh

FE
M

16
th

re
ad

s

0

20

40

60

80

100

46
%

81
%

89
%

42
%

79
%

87
%

P
re

-
+

A
ss

em
bl

e
ti
m

e
(s

)

14 / 15

Conclusion and perspectives

Conclusion
• GmshFEM is a new, open source C++ finite element library based on the

Gmsh API.

• Excellent parallel efficiency for high-order scalar and vector problems.
• Problem definitions are close to GetDP ones.
• Currently used to solve extreme-scale time-harmonic finite element

problems in combination with an optimized DDM solver.

Perspectives
• Offloading of linear algebra on GPUs.
• Python and Julia bindings for scripting without re-compilation.

A. Royer, É. Béchet, and C. Geuzaine, "Gmsh-Fem: An
Efficient Finite Element Library Based On Gmsh",
presented at the 14th WCCM-ECCOMAS Congress, 2021,
pp. 1–13.

15 / 15

Conclusion and perspectives

Conclusion
• GmshFEM is a new, open source C++ finite element library based on the

Gmsh API.
• Excellent parallel efficiency for high-order scalar and vector problems.

• Problem definitions are close to GetDP ones.
• Currently used to solve extreme-scale time-harmonic finite element

problems in combination with an optimized DDM solver.

Perspectives
• Offloading of linear algebra on GPUs.
• Python and Julia bindings for scripting without re-compilation.

A. Royer, É. Béchet, and C. Geuzaine, "Gmsh-Fem: An
Efficient Finite Element Library Based On Gmsh",
presented at the 14th WCCM-ECCOMAS Congress, 2021,
pp. 1–13.

15 / 15

Conclusion and perspectives

Conclusion
• GmshFEM is a new, open source C++ finite element library based on the

Gmsh API.
• Excellent parallel efficiency for high-order scalar and vector problems.
• Problem definitions are close to GetDP ones.

• Currently used to solve extreme-scale time-harmonic finite element
problems in combination with an optimized DDM solver.

Perspectives
• Offloading of linear algebra on GPUs.
• Python and Julia bindings for scripting without re-compilation.

A. Royer, É. Béchet, and C. Geuzaine, "Gmsh-Fem: An
Efficient Finite Element Library Based On Gmsh",
presented at the 14th WCCM-ECCOMAS Congress, 2021,
pp. 1–13.

15 / 15

Conclusion and perspectives

Conclusion
• GmshFEM is a new, open source C++ finite element library based on the

Gmsh API.
• Excellent parallel efficiency for high-order scalar and vector problems.
• Problem definitions are close to GetDP ones.
• Currently used to solve extreme-scale time-harmonic finite element

problems in combination with an optimized DDM solver.

Perspectives
• Offloading of linear algebra on GPUs.
• Python and Julia bindings for scripting without re-compilation.

A. Royer, É. Béchet, and C. Geuzaine, "Gmsh-Fem: An
Efficient Finite Element Library Based On Gmsh",
presented at the 14th WCCM-ECCOMAS Congress, 2021,
pp. 1–13.

15 / 15

Conclusion and perspectives

Conclusion
• GmshFEM is a new, open source C++ finite element library based on the

Gmsh API.
• Excellent parallel efficiency for high-order scalar and vector problems.
• Problem definitions are close to GetDP ones.
• Currently used to solve extreme-scale time-harmonic finite element

problems in combination with an optimized DDM solver.

Perspectives
• Offloading of linear algebra on GPUs.
• Python and Julia bindings for scripting without re-compilation.

A. Royer, É. Béchet, and C. Geuzaine, "Gmsh-Fem: An
Efficient Finite Element Library Based On Gmsh",
presented at the 14th WCCM-ECCOMAS Congress, 2021,
pp. 1–13.

15 / 15

