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HIGH TEMPERATURE SUPERCONDUCTORS

Copper oxides (CuO2) doped with rare earths (La, Bi-Sr-Ca, Y-Ga-Ba etc.)

Higher critical temperature and upper critical field with respect to the traditional 

low-temperature superconductors (LTS), such as Nb-Ti or Nb3Sn
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SCREENING CURRENTS

HTS tape in a time-dependent magnetic field 𝜕t𝐁:

𝜕t𝐁 Screening currents 𝐉screen
ρ → 0 Persistent magnetization 𝐁screen

Large filament size (5-12 mm)  large 𝐁screen

Magnetic field quality and thermal behavior, as principal Joule loss contribution

Inhomogeneous current density distribution  Detrimental impact on field quality
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■ Copper

■ ReBCO

■ Substrate

~mm

~μm

ρ → 0

𝐉screen

𝜕t𝐁 𝐁screen



THERMAL DYNAMICS

Main contributors to the thermal dynamic of superconducting materials in accelerators:
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QUENCH

Local transition from superconducting to normal conducting state

Energy dissipated in the resistive zone

Potentially irreversible effects for high energy-density devices (accelerator magnets)!

HTS characteristics: 

• low heat diffusivity

• low Ԧ𝑣quench, small resistive zone, difficult to detect

• high Thot−spot, potential damage in short time (tens of ms)

8

HTS tape 

T

x

Thot−spot

Ԧ𝑣quench

resistive zone



DYNAMIC EFFECTS IN ACCELERATORS (1/2)

Circuit (e.g. LHC mains)

7 km long, 154 Magnets

Topological: Switches, thyristors, diodes

Electrical: Propagative phenomena, 

dynamic impedances (magnets) ,EM 

crosstalk

• …

Magnets (e.g. MB magnet)

~102 coil turns, ~104 strands

Magnetic: magnetization, IFCC, ISCC, 
EM crosstalk…

Thermal: magnetization, IFCL, ISCL, 
quench, coolant…

Mechanic: Lorentz forces, thermal 
strain…

9

Field-Circuit Coupled Systems!

≈ 𝟏𝐱𝟏𝟎𝟒 lumped elements 

for the LHC mains



DYNAMIC EFFECTS IN ACCELERATORS (2/2)

Simulation challenges 

• Complex components 

• Cutting-edge technologies

• Physical size of devices

• Extreme ambient conditions

• Extremely fast phenomena 

(e.g. beam dynamics)

• …

• Mutual electro-thermo-dynamic 

interaction between circuit, power 

converters, magnets and protection 

systems
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FORMULATION 

Magnet domain decomposition

ΩH = ΩH,s ∪ ΩH,c source region (coils):

• ΩH,s superconductors (𝜎 → +∞)

• ΩH,c normal conductors 

ΩA = ΩA,c ∪ ΩA,i passive region (Iron, air):

• ΩA,c normal conductors 

• ΩA,i insulators (𝜌 → +∞)

Field equations (see also Julien’s presentation)
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𝛻 × ρ𝛻 × 𝐇 + μ𝜕t𝐇 + 𝛻 × 𝛘 us = 0 𝐇 formulation in ΩH

𝛻 × ν 𝛻 × 𝐀⋆ + σ𝜕t𝐀
⋆ = 0 𝐀⋆ formulation in ΩA

ρmCp𝜕tT − 𝛻 ⋅ k𝛻T − 𝐉 ⋅ ρ𝐉 = 0 Heat balance equation T in Ω

ΩH׬
𝛘 ⋅ 𝛻 × 𝐇dΩ = is Current constraint 

𝛘 = −𝛻ξ, ξ ∶ 𝛻 ⋅ σ𝛻ξ = 0 Voltage distribution function

+

ΩA,c

𝐧

Ω ∈ ℝ3

is
us
−

ΩH,c

𝐧

ΓHA

ΓE

ΓJ

ΩH,s

ΓA
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SEMI-DISCRETE PROBLEM

Discretization functions

• Edge elements for 𝐇, 𝐀⋆ ( 1
st

and 2
nd

order)

• Nodal elements for 𝛘, T (1
st

order)

Finite material properties, bounded condition number   Solver stability 

Observations:

• Electric ports ΓJ and ΓE as connections with the external circuit

• 𝐮𝐬, 𝐢𝐬 𝑟-th winding as one-port component, with impedance 𝑍𝑟: 𝑢𝑟 = 𝑍𝑟𝑖𝑟
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FIELD-CIRCUIT COUPLING

Interface derivation

Schur complement applied in the semi-discrete problem

Assumption Kν+𝝀Mσ positive-definite (true for gauged 𝐀⋆)  Invertible

Interface derived as optimal Schwarz transmission condition for linear systems

𝐙 jω = 𝐗T 𝐊ρ + jω𝐌μ + 𝐐T 𝐊ν + jω𝐌σ −1 𝐐 −1𝐗 −1

Approximation of derivatives in time domain (e.g. Taylor expansion series)

𝐙 jω ≈ 𝐙 0 + jω ቤ
𝜕𝐙 jω

𝜕jω
jω=0

𝐮𝐬 ≈ 𝐑𝐢𝐬 t + 𝐋
d

dt
𝐢𝐬 t
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resistive term 𝐇-flux 𝐀⋆-flux eddy currents term



Multirate systems

• Fast System  small steps, slow System  large steps

• Different time steps for efficiency

• Different solvers since different nature of the problem

TIME-DOMAIN COUPLING
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COSIMULATION FRAMEWORK

16

Middle Layer

• Communication bus, 

common interface

• Standard set of rules for 

data exchange

Bottom Layer

• Interpreter (framework vs. 

simulation tools)

• Tool-oriented (single adapter for 

multi-models)

Top Layer 

• Hierarchical co-simulation 

algorithm 

• Waveform relaxation, Gauss-

Seidel scheme

Lean, Modular, Expandable 

Waveform Relaxation, Gauss Siedel

Communication Bus

Tool Adapter𝑗

API𝑗

Tool𝑗
Coupled
Problem

Tool Adapter𝑘

API𝑘

Tool𝑘

Hierarchical Co-Simulation

User Input Output

Model1

Model𝑛

Model𝑚

(*) https://espace.cern.ch/steam

(*)

https://espace.cern.ch/steam


Weak field formulation  general description of the field problem

Well-documented coupling interfaces  ready to be used

Tool adapters in the co-simulation framework  tool independent

F r, t = 0 in Ω

නF r, t ⋅ wdΩ = 0

Fiනwi ⋅ wj dΩ = 0

Strong form:

Weak form:

Semi-discrete form: with F r, t ≈ σwiFi

Space discretization and time-integration 

via FEM solvers

REMARKS
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Numerical examples in COMSOL, but the approach is completely general! 
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HTS solenoid protected by quench heaters

Electro-magneto-thermal coupling between the solenoid and the quench heaters! 

Solenoid supply Heaters supply

(A) PROBLEM SETTING
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(*) Material properties available at https://gitlab.cern.ch/steam/steam-material-library

(**) Circuit parameters in appendix

Iron core

Holder

Coil

Insulation

Heater strips

Rendering of the HTS solenoid (*) Electrical layout (**)

https://gitlab.cern.ch/steam/steam-material-library


(A) SIMULATION SETUP
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Current decay in the coil (left) and current 

discharge  in the heater strips (right)
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(A) NUMERICAL RESULTS (2/2)

Temperature in the coil cross section
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(A) TIME STEPPING
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Maximum time step for each solver, for each time window

Crowbar

Quench

Quench heaters

Small steps required for:

1. Quench heater powering

2. Quench transition



(B) PROBLEM SETTING (1/3)
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2D FEM model

Iron

Wing deck
Central deck

Feather-M2 HTS insert dipole magnet

Main features:

• Aligned coil concept 

• Coil made of two central and wing decks

• Roebel cable, fully transposed tapes

2D model:

• Layer jumps  4-quadrant

• 48 turns, 720 tapes

Cable cross section

Photos courtesy of J. Van Nugteren



(B) PROBLEM SETTING (2/3)

Computational cost (*)

Comparison on a test problem

Tapes stacked on top of each other

Reduction of two orders of magnitude
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(*) CPU: Intel Core i7-3770 @ 3.40GHz. RAM: 32 Gb. OS: Win 10



(B) PROBLEM SETTING (3/3)

Modelling of Jc (T, B, 𝛉)

Jc data available only at T = 77 K → Lift factor 

Lift factor calibrated with the measured critical current Ic
Angle dependency gauged at θ = 30° (magnetostatic simulation)
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θ

𝒏 𝑩

Anisotropy included in the model, but uncertainty on material properties

tape



(B) SIMULATION SETUP

Field quality

In the magnet aperture Ωa, ΔAz = 0

General Solution: Fourier expansion series 

Br r, φ = ෍

n=1

∞

nrn−1 γncos(nφ) + nrn−1δnsin(nφ)

An(r), Bn(r) skew and normal magnetic field 

multipoles calculated along Γa

Source current

Pre-cycle → first magnetization

Steps of 250 A, plateaus of 120 s:

decay of inductive effects

{p𝑖,up, p𝑖,dn} Evaluation points 
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p𝑖,up p𝑖,dn

An(r) Bn(r)

φ

r

Ωa

Γa

r0
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(B) NUMERICAL RESULTS (1/2)

Computational time

0.5 h (*) for about 120k DoF

Current density plots:  same source current, different time steps
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Normalized current density in the coil (first quadrant)

a) b) c)

(*) CPU: Intel Core i7-3770 @ 3.40GHz. RAM: 32 Gb. OS: Win 10



(B) NUMERICAL RESULTS (2/2)

Magnetic field quality

Multipole expansion series as function of current, for different temperatures
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Very good agreement with measurements



(C) PROBLEM SETTING (1/2)

No insulation (NI) coil

Main features:

• Current bypass for quench zones

• Limitation of peak temperature

• Large screening currents in field 

dynamics

• Unbalanced Lorentz forces during 

quench

Electrical layout

Coil clamped with two copper rings

Leads as two concentric hollow cylinders
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NI coil

Leads

𝑖s(𝑡)

𝑖coil(𝑡)

+−

Quench



100 mm

ReBCO 1 𝜇m

4 mm

(C) PROBLEM SETTING (2/2)

Scale challenge: 

ReBCO ≪ Tape ≪ Coil

Up to tens of pancakes, thousands of turns

Mesh size: ≈ 𝑛2D𝑛tape2𝜋𝑟coil[mm] 𝑛pancake

Example: 100 elements per tape cross section,

100 tapes, 10 mm radius 

 ≈ ~106 elements per pancake

Case study:

Five-turns in one pancake

Copper-coated ReBCO tape, no solder

4 mm wide tape, Ic = 1 kA
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(C) MESH
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(A)

Detail of the tape end (A)

HTS

Cu

Spiral out

Spiral inSpiral ends

Spot heater

Coil

Main features

• Mapped mesh in the tape cross section

• Triangular mesh in the tape ends

• Hexahedrons and prisms along the coil

• ~4 × 104 elements, 1.1 × 105 dof



Constant material properties  Speedup, traditional formulations

Comparison with the COMSOL in-built 𝐀⋆-formulation (mf module)

Verification of the implemented equations 

not of the behaviour of the superconducting material

(C) MODEL VERIFICATION
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(C) SIMULATION SETUP

Constant voltage 𝑈𝑠 applied to the coil:

𝑢𝑠 𝑡 = 𝑈𝑠 ∀𝑡 ∈ 𝑡start; 𝑡end

Spot heater modeled a Dirichlet boundary condition 𝑇Γ,dir(𝑡) for temperature:

𝑇Γ,dir 𝑡 = ൝
𝑇op if 𝑡 ≤ 𝑡𝑞
𝑇qh 𝑡 if 𝑡 > 𝑡𝑞
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(C) NUMERICAL RESULTS (1/2)
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𝑡𝑞 + 0.2 𝑠 𝑡𝑞 + 0.4 𝑠 𝑡𝑞 + 1.0 𝑠

HTS tapes

Spot 

heater

Figure: temperature distribution in the coil, detailed for the spot heater region

Temperature in the spot heater region



Current dynamics at the coil leads

Current redistribution between the tapes (Turn numbering from inside to outside):
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(C) NUMERICAL RESULTS (2/2)
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Computational time (*):

Powering: 20 min 

Quench: 50 min

Recover: 15 min

(*) Intel Xeon CPU E5-2667 v4 @ 3.40GHz 128 GB of RAM Windows 7 OS



(D) PROTOTYPES DEVELOPMENT (1/2)

HALO: 

Harmonics-Absorbing Layered Object

Key features:

1. Magnetic field lines shaped by 

persistent screening currents

2. Cancellation only of undesired field 

components (static and dynamic)

3. Passive and self-regulating

Proof of concept design
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(D) PROTOTYPES DEVELOPMENT (2/2)

Experimental setup Experimental and numerical result

Magnetic field quality (total harmonic 

distortion) in the magnet aperture, without 

and with HALO
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2~4 factor in field quality improvement 

(*)

(*) L. Bortot et al., https://arxiv.org/abs/2103.14354 preprint.

https://arxiv.org/abs/2103.14354


CONCLUSIONS AND OUTLOOK

Conclusions

1. Transient effects in accelerators: multi physics, scale and rate phenomena

2. Specialized models + Co-simulation for multi rate problems

3. A-H coupled field formulation for superconductors

4. High sensitivity to tape parameters characterization of paramount importance

Outlook – HTS models

1. Very Good understanding about 2D models

What is missing? 

What are the next challenges? 

2. Major challenge in full-scale 3D models

Brute-force (cluster computing)? 

Homogenization (anisotropic resistance)?
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Thank you for your attention!
Contact: lorenzo.bortot@cern.ch

Ohmic loss distribution 

in a HTS solenoid

W

m2

normalized induced 

current in a HTS bulk

Persistent magnetization 

in a block-coil dipole

mailto:lorenzo.bortot@cern.ch
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HTS SOLENOID: CIRCUIT PARAMETERS
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CONVERGENCE RATE

42

Definitions, at iteration 𝑖:

• 𝑥𝑖 signal (current in the magnet) 

• 𝜀𝑎𝑏𝑠 𝜀𝑟𝑒𝑙 absolute & relative error

• 𝜀𝑖 convergence error

• Fconv convergence flag

Enforcement of at least three 

iterations per time window 

𝜀𝑖 = 1

Quench

𝜀𝑎𝑏𝑠 = 0.001
𝜀𝑟𝑒𝑙 = 0.25

Quench as abrupt change in resistivity

 High influence on the solenoid current

 More iterations needed!

𝜀𝑖 = max
𝑥𝑖 − 𝑥𝑖−1

𝜀𝑎𝑏𝑠 + 𝑥𝑖 𝜀𝑟𝑒𝑙
, 𝑖 ≥ 2

Fconv = ቊ
0, if 𝑖 < 2
𝜀𝑖 < 1, if 𝑖 ≥ 2


