What's the Matter with the CMB? Wayne Hu CERN, May 2021 [Based in part on Hu & White (1997) astro-ph/9609079] #### Cold Dark Matter in the CMB • Hydrostatic equilibrium, gravitational forcing, diffusion damping #### Cast of Characters • $\Theta = \Delta T/T$: local CMB blackbody temperature fluctuation $p_{\gamma} = \rho_{\gamma}/3 \propto T^4$: radiation pressure, hydro equilibrium $n_{\gamma} \propto T^3$: photon number density, continuity equation #### • Gravity: a: scale factor $T \propto a^{-1}$ Ψ: Newtonian gravitational potential - hydro equilibrium $\Phi \sim -\Psi$: Local scale factor pert.- changes local number density • Bulk (fluid) properties $\lambda_C \equiv 1/\dot{\tau}$: mean free path of γ to Thomson scattering $R = 3\rho_b/4\rho_\gamma$: baryon-photon (momentum density) ratio v_{γ}, v_b : photon and baryon bulk velocity π_{γ} : radiative viscosity or anisotropic stress ### Exact (Linear) EOMs - Linear fluctuations: solve in Fourier (or wavenumber k-) space - Continuity: number density changes due to the local volume expansion and bulk velocity divergence $$[a^3 \delta n_{\gamma}]^{\cdot} = -a^3 n_{\gamma} (k v_{\gamma} + 3 \dot{\Phi}),$$ • Momentum: momentum density $(\rho + p)v$ changes additionally with de Broglie wavelength, stress and potential gradients $$\left[a^4(\frac{4}{3}\rho_{\gamma})(v_{\gamma}+Rv_b)\right] = a^4k\left[\delta p_{\gamma}-\frac{2}{3}p_{\gamma}\pi_{\gamma}+\frac{4}{3}\rho_{\gamma}(1+R)\Psi\right]$$ • Rewrite in terms of Θ : $\delta n_{\gamma}/n_{\gamma} = 3\Theta$, $\delta p_{\gamma}/\rho_{\gamma} = 4\Theta/3$ Equilibrium : $$\Theta + (1 + R)\Psi = 0$$, $\pi_{\gamma} = 0$ • Observed temperature fluctuations are local Θ corrected for gravitational redshift: $\Theta + \Psi$ ### Fluid Approximation • Near recombination $z \approx 10^3$ and $\Omega_b h^2 \approx 0.02$, the (comoving) mean free path of a photon $$\lambda_C \equiv \frac{1}{\dot{\tau}} \sim 2.5 \mathrm{Mpc}$$ small by cosmological standards! - On scales $\lambda \gg \lambda_C$ photons are tightly coupled to the electrons by Thomson scattering which in turn are tightly coupled to the baryons by Coulomb interactions - Single bulk velocity $v_{\gamma}=v_b$ and the photons carry no anisotropy in the rest frame of the baryons $\pi_{\gamma}=0$ - No heat conduction or viscosity (anisotropic stress) in fluid #### **Acoustic Oscillations** • Combine continuity and momentum in fluid limit $$[(1+R)\dot{\Theta}] + \frac{1}{3}k^2\Theta = -\frac{1}{3}k^2(1+R)\Psi - [(1+R)\dot{\Phi}]$$ - Acoustic oscillations of observed temperature $\Theta + \Psi$ around equilibrium point - Toy example: if R, Ψ , Φ constant $$[\Theta + \Psi](\eta) = [\Theta + (1+R)\Psi](0) \cos(ks) - R\Psi$$ where s is the sound horizon $s = \int c_s d\eta = \int \frac{dt/a}{\sqrt{3(1+R)}}$ • Temporal oscillations around equilibrium point that measures gravitational potential: $-R\Psi$ ### Temperature Anisotropy - Spatial oscillations frozen at recombination; photons then stream - Viewed at distance D_* as angular anisotropy $L \approx kD_*$ #### Peak Modulation - Peaks in power when oscillations reach extrema at recombination; $ks_* = n\pi$ - Equilibrium offset adds to odd peaks, subtracts from even peaks - Toy model: #### Peak Modulation • Full calculation vs damping removed calculation $v_{\gamma} = v_b, \pi_{\gamma} = 0$ ### Peak Modulation ullet Once damping removed: equilibrium measures grav potential Ψ • Reveals Ψ decays at high k and observed temperature rises #### Matter-Radiation - ullet At high k, acoustic oscillations begin in the radiation dominated regime - Acoustic oscillations (Jeans) stabilizes (comoving) density fluctuations (Δ) leading to gravitational potential decay - Poisson equation $$k^2\Phi = 4\pi Ga^2\rho\Delta$$ in the radiation dominated era $\rho \propto a^{-4}$ and Δ oscillates at constant amplitude • Decay is timed to beginning of acoustic oscillation acting as a coherent "push" – change in Φ doubles the effect to $2\Delta\Psi$. # Radiation Driving • Cartoon version (doubled by local scale factor Φ effect): ## Radiation Driving • Non-cartoon version: $25 \times$ power at low k limit (Sachs-Wolfe effect), lowered to ~ 20 due to neutrino contribution $$|[\Theta + \Psi](0) + \Delta\Psi - \Delta\Phi| = |\frac{1}{3}\Psi(0) - 2\Psi(0)| = |\frac{5}{3}\Psi(0)|$$ • Since baryons are also in acoustic oscillations driving goes away only when CDM dominates: $\Psi_*(k)$ measures CDM density • Oscillations damp over time given viscosity π_{γ} – 3rd CDM effect ## Potential Envelope • Driving measures matter radiation scale $L_{\rm eq}$ # **Damping** - Tight coupling equations assume a perfect fluid: no viscosity, no heat conduction - Fluid imperfections are related to the mean free path of the photons in the baryons $$\lambda_C = \dot{\tau}^{-1}$$ where $\dot{\tau} = n_e \sigma_T a$ Dissipation related to diffusion length: random walk approx $$\lambda_D = \sqrt{N}\lambda_C = \sqrt{\eta/\lambda_C}\,\lambda_C = \sqrt{\eta\lambda_C}$$ the geometric mean between the horizon η and mean free path • Comoving horizon scale $\eta = \int \frac{d \ln a}{Ha}$: so CDM effect on the expansion $H^2 = \frac{8\pi G}{3} \rho$ changes damping scale relative to acoustic peak scale ## CDM vs Baryons in the CMB • Distinguishable effects of hydro equilibrium, forcing, damping ### **Planck Precision** #### • Planck 2018 parameter estimates: | Parameter | TT+lowE
68% limits | TE+lowE
68% limits | EE+lowE
68% limits | TT,TE,EE+lowE
68% limits | TT,TE,EE+lowE+lensing
68% limits | |---|-----------------------|---------------------------|-----------------------|------------------------------|-------------------------------------| | $\Omega_b h^2 \ldots \ldots \ldots$ | 0.02212 ± 0.00022 | 0.02249 ± 0.00025 | 0.0240 ± 0.0012 | 0.02236 ± 0.00015 | 0.02237 ± 0.00015 | | $\Omega_c h^2 \ . \ . \ . \ . \ . \ . \ .$ | 0.1206 ± 0.0021 | 0.1177 ± 0.0020 | 0.1158 ± 0.0046 | 0.1202 ± 0.0014 | 0.1200 ± 0.0012 | | $100\theta_{MC}$ | 1.04077 ± 0.00047 | 1.04139 ± 0.00049 | 1.03999 ± 0.00089 | 1.04090 ± 0.00031 | 1.04092 ± 0.00031 | | $\tau_{\text{\tiny I}} \dots \dots \dots \dots$ | 0.0522 ± 0.0080 | 0.0496 ± 0.0085 | 0.0527 ± 0.0090 | $0.0544^{+0.0070}_{-0.0081}$ | 0.0544 ± 0.0073 | | $ln(10^{10}A_s)$ | 3.040 ± 0.016 | $3.018^{+0.020}_{-0.018}$ | 3.052 ± 0.022 | 3.045 ± 0.016 | 3.044 ± 0.014 | | $n_s \dots \dots \dots \dots$ | 0.9626 ± 0.0057 | 0.967 ± 0.011 | 0.980 ± 0.015 | 0.9649 ± 0.0044 | 0.9649 ± 0.0042 | | $H_0 [km s^{-1} Mpc^{-1}]$ | 66.88 ± 0.92 | 68.44 ± 0.91 | 69.9 ± 2.7 | 67.27 ± 0.60 | 67.36 ± 0.54 | ### Summary • Three effects of CDM: Hydrostatic equilibrium: even-odd modulation measures $R\Psi$ Radiation driving elimination: decrease in (undamped) peak amplitude measures matter radiation ratio: ρ_c/ρ_r Damping scale: change relative to sound horizon measures matter contribution to expansion rate H - Cross checks and calibrates baryon density as well as fundamental assumption: only photons, neutrinos, baryons, CDM Passed with only $\sim 2\sigma$ "curiosities" (peaks slightly too smooth) - What's the matter with the CMB? H_0 inference – requires robust calibration of the sound horizon Viable CMB H_0 explanations must be tuned to coincidentally mimic CDM behavior