NUSTORM as a Muon Collider
! Demonstrator

o ',: Science & Technology Facilities Council
e =/ ISIS Neutron and Muon Source

C. T. Rogers
ISIS
Rutherford Appleton Laboratory



NuSTORM accelerator challenges

NUSTORM facility is a unique facility for

= High muon rate

= Well-characterised neutrino beam

Several applications

= Measurement neutrino scattering cross sections

= Search for sterile neutrinos and other BSM physics
* Provide a technology test-bed for the muon collider

What is the nuSTORM facility?
What is the physics reach?
How can it provide a test-bed for the muon collider?
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NUSTORM facility

= What is the nuSTORM facility?
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= Main features
= ~250 kW target station
= Pion transport line
= Stochastic muon capture into storage ring
= QOption for conventional FODO ring or high aperture FFA ring
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Target and Pion Transport Line
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= Conventional 250 kW target horn

= Pion transport line
"= Proton beam dump
= Momentum selection
= Active handling
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Stochastic Muon Capture
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A. Liu et al, Design and Simulation of the nuSTORM Pion Beamline, NIM A, 2015
D. Adey et al, Overview of the Neutrinos from Stored Muons Facility — nuSTORM, JINST, 2017

5000 6000

= Pions injected into the decay ring
= Capture muons that decay backwards in pion CoM frame

= Undecayed pions and forwards muons diverted into muon test area
= Extraction line at end of first decay straight
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Storage Ring
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= Storage ring technologies:

= Conventional FoDo ring

= High acceptance FFA ring
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nuSTORM at CERN - Feasibility Study, Ahdida et al, CERN-PBC-REPORT-2019-003, 2020
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Muon Collider Technical Challenges

= Target Station
= High-field solenoid in high radiation environment
= Target lifetime and radiation damage
= Cooling
= Rapid cooling in muon lifetime
= Acceleration and Collider
= Rapid acceleration in muon lifetime
= Neutrino radiation management
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Target
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lonisation Cooling
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= Beam loses energy in absorbing material
= Absorber removes momentum in all directions
= RF cavity replaces momentum only in longitudinal direction
* End up with beam that is more straight

= Multiple Coulomb scattering from nucleus ruins the effect
= Mitigate with tight focussing
= Mitigate with low-Z materials

= Equilibrium emittance where MCS completely cancels the
cooling
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Muon Cooling
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Cooling Risks

Performance does not match simulation, for example because
energy straggling is underestimated, alignments can't be achieved,
Rectilinear B |etc

w

Reduced performance

RF voltage cannot be achieved, for example because gradients are
found to be above break down limit 3Back off on RF requirements

w

Magnetic field strength cannot be achieved

Radiation load on the magnets is too high due to regular beam
losses and muon decay

Heat load on the absorber is challenging to manage

Beam loading of RF cavities

Space charge

Back off on magnet requirements
Back off on magnet requirements
and add extra shielding

Split the beam?
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Final Cooling [Performance does not match requirements Reduced performance

RF voltage cannot be achieved, for example because gradients are
found to be above break down limit 3Back off on RF requirements

w

Magnetic field strength cannot be achieved

Radiation load on the magnets is too high due to regular beam
losses and muon decay

Heat load on the absorber is challenging to manage

Beam loading of RF cavities

Space charge

Back off on magnet requirements
Back off on magnet requirements
and add extra shielding

Split the beam?
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Further experimental measurements of energy

Literature review on straggling; simulation study —straggling may be necessary. Integration test of
of impact on uncertainty in straggling distribution cooling apparatus.

Design of magnets is required including e.g.
force calculations, support design

Further simulation and design work

Further optimisation of the cooling channel
design. Alternative concepts such as frictional
cooling should be considered

Design of magnets is required including e.g.
force calculations, support design
Calculations; radiation shielding for high field
magnets

Further simulation and design work

Proof of breakdown suppression with a
“production” cavity and a reasonable production
run of several cavities, including realistic
magnetic fields

Prototyping of magnets. Demonstration of QPS
system in a reasonable magnet line.

Further experimental measurements of energy
straggling may be necessary. Integration test of
cooling apparatus.

Proof of breakdown suppression with a
“production” cavity and a reasonable production
run of several cavities, including realistic
magnetic fields

Prototyping of magnets. Demonstration of QPS
system in a reasonable magnet line.

= Principle risks are at the low emittance end of the cooling

channel
= Extremely high magnetic field
= More intense beam
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Challenges

Magnetic Field, B (T)
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! Rectilinear B8 (Stratakis et al)

650 MHz coils 50

0.3-_

cavities

0.2
— 0.1
g q

= 00
-0.14

-0.2 3
033,/ [
-0.41 : . . Lo
0.0 0.2 0.4 0.6 0.8
z(m)

"= Maintaining adequate acceptance between stop bands

= Dispersion and closed orbit control

= Successful RF operation and suppression of RF breakdown

= Magnet engineering

" |ntegration of magnet with RF and absorber

= Day-to-day operation
Also intensity/collective effects

= Space charge, beam loading, absorber/RF window heating

= Decay radiation load on magnets



Rectilinear B8

2144

212 4

2104

208 1

204 4

202 1

200 4

200

100 A

T
100

T
200

z[m]

T
300

\l, \‘\ Science & Technology Facilities Council

(

V‘:?" ISIS Neutron and Muon Source

T
200

z[m]

13



s
o
z
N
o

31.0 1
202.0 1
30.5
201.59 30.0
E
E
@ 29.5
201.04
29.01
200.5
../ D metres after
)
lattice start
4&5 45‘0 4§5 46‘0 4&5 47;0 4'1"5 4&0 4é5 4415 4§0 4%5 460 4“55 47"0 4'1"5 4é0 45‘5
z[m] z[m]

™\ Science & Technology Facilities Council

P

ISIS Neutron and Muon Source

14



Rectilinear B8
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Rectilinear B8
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Rectilinear B8
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Rectilinear B8

Upstream Downstream

Focus 15T Focus 15T
Transverse
Emittance [mm] 0.4 0.32
Transverse Beta
[mm] 29 890 29 890
sigma(x) [mm] 2.5 13.7 2.3 12.3
Sigma(px) [MeVic] 17.8 3.1 15.5 2.8
Mean momentum
[MeVic] 200 200
Longitudinal
Emittance [mm] 2.2 1.8
sigma(t) [ns] 0.095 0.084
sigma(E) [MeV] 9.5 8.6

= Beam parameters upstream and downstream of 40 m cooling
channel (50 cells)

= “Focus” is at the focus of the rectilinear channel
= 1.5Tisin a uniform 1.5 T solenoid

= Might imagine matching beam in/out of rectilinear for
diagnostics/etc
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Final cooling (Sayed et al)
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Final cooling
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Final Cooling - Summary

Upstream Downstream

Focus 15T Focus 15T
Transverse
Emittance [mm] 0.072 0.055
Transverse Beta
[mm] 18 320 18 320
sigma(x) [mm] 1.4 5.8 1.2 5.1
sigma(px) [MeViIc] 5.5 1.3 4.8 1.1
Mean momentum
[MeVic] 71 71
Longitudinal
Emittance [mm] 53 62
sigma(t) [ns] 4.9 5.7
sigma(E) [MeV] 3.8 3.8

= Beam parameters upstream and downstream of single cooling
cell

= “Focus” is at the (high field) focus of the solenoid
= 1.5Tisin auniform 1.5 T solenoid
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Solenoid Cooling Ring (Muons)

RF Solenoid+
Cavity Dipole

Number of Cells
Radius

Energy
Solenoid field
Dipole field
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Solenoid Cooling Ring (Muons)

Upstream |Downstream

Focus Focus
Transverse
Emittance [mm)] 12 3.3
Transverse Beta
[mm] 400 400
sigma(x) [mm] 50 26
Sigma(px) [MeVic] 25 13
Mean momentum
[MeVic] 200 200
Longitudinal
Emittance [mm)] 18.4 4.8
sigma(t) [ns] 0.805 0.411
sigma(E) [MeV] 8.05 4.1

More MICE-like
Consider pion stochastic injection like nuSTORM?

No need to extract
= But not like a “realistic” muon collider cooling ring

Would need to design low emittance cooling option
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Input beam

Bring beam energy down by low-Z energy absorber
Generate transverse distribution by collimation

Longitudinal distribution not so straight forward
" (Solenoid) chicane to generate dispersion + collimators?
= RF kickers to generate time structure?

Need to leave enough muons that they can be measured!
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[mrad]

Storage Ring Phase Space

Racetra

ck FFAG muon decay ring for nuSTORM

with triplet focusing, Lagrange et al, J.Inst (2018)
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Muon phase space in the nuSTORM storage ring
Central momentum 3.8 GeV/c
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‘Survey of Muon Beamlines
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- Possible muon t

NuSTORM would make an
excellent facility

= One of the highest current high
energy muon beams

= Deal with routine issues

= E.g. routine operation of
equipment in presence of muon
decays

Target/irradiation test area
Muon beam physics tests



Discussion

= Few options for ionisation cooling tests considered

= Worth thinking about how we can make the beams
* Probably intensity limit is ruled out - for muons at least
= Do we build a proton test facility elsewhere?
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