

Potential US Testing Opportunities for Muon Collider Capabilities

Workshop on Muon Collider Testing Opportunities

Brookhaven National Laboratory

Drawing on work conducted by: the US Muon Accelerator Program (MAP), the International Design Study for a Neutrino Factory (IDS-NF), and the International Muon Ionization Cooling Experiment (MICE)

Introduction

- Looking towards the possibility that MC activities may resume in the US after the conclusion of the upcoming US Snowmass process
- Examples are based on areas of engagement identified during the US Muon Accelerator Program
 - No commitments can presently be made
- New opportunities may also appear...
- Focus on:
 - Magnet Demonstration Capabilities
 - RF Demonstration Capabilities
 - Beam Demonstration and Beam Test Capabilities (including beam analogue tests) Of course, there has been considerable interest in the past on facility options such as nuSTORM

The basic elements

Key R&D Challenges (from MAP Study)		
Target	 Issues Multi-MW Targets High Field, Large Bore Capture Solenoid 	 Status Ongoing >1 MW target development Challenging engineering for capture solenoid
Front End	 Energy Deposition in FE Components RF in Magnetic Fields (see Cooling) 	Current designs handle energy deposition
Cooling	 <i>RF</i> in Magnetic Field High and Very High Field SC Magnets Overall Ionization Cooling Performance 	 MAP designs use 20 MV/m → 50 MV/m demo >30 T solenoid demonstrated for Final Cooling Cooling design that achieves most goals
Acceleration	 Acceptance Ramping System Self-Consistent Design 	 Designs in place for accel to 125 GeV CoM Magnet system development needed for TeV-scale Self-consistent design needed for TeV-scale
Collider Ring	 Magnet Strengths, Apertures, and Shielding High Energy Neutrino Radiation 	 Self-consistent lattices with magnet conceptual design up to 3 TeV > ~5 TeV - v radiation solution required
MDI/Detector	 Backgrounds from μ Decays IR Shielding 	 Further design work required for multi-TeV Initial physics studies at 1.5 TeV promising
March 24, 2021	Workshop on Muon Collider Test	ing Opportunities BROOKHAVEN 4 NATIONAL LABORATORY

Magnet Design <u>Needs</u>

- Major Items
- Target: Capture Solenoid
- 6D Cooling Channel: Integrated RF Cavities
- Final Cooling (Emittance Exchange): Very high field solenoids
- Ramping Magnets for high energy acceleration
- Large aperture shielded collider magnets
- US Magnet Capabilities
 Upstream proton
 well-matched to support development program
- BNL, FNAL, LBNL, NHMFL
- Academia
- **Industrial partners**

Large Aperture

March 24, 2021

MuCool Test Area (MTA) and NC RF Development

Future End Station Options?

- MTA
 - Hardware decommissioned at the conclusion of MAP
 - End station re-tasked for other studies
 - Plasma interaction studies and impacts on beam dynamics studies were discontinued at the conclusion of MAP ⇒ Studies important to developing an understanding of high intensity muon beams in a cooling channel
- Fermilab moving to PIP-II (800 MeV SC Linac)
 - Will NC Linac still be available in the relevant time frame?
 - Will suitable testing options become available with
- Alternatives in the US
 - 200 MeV LINAC at BNL
 - Suitable end station would need to be constructed

Workshop on Muon Collider Testing Opportun

Superconducting RF Development

- Stored energy and aperture are critical issues in the early acceleration stages
- Nb on Cu R&D

 Multiple US Labs could contribute

201 MHz SCRF R&D

Final Comments and Conclusion

- Additional comments
 - US efforts continue in high power targetry
 - RADIATE Collaboration
 - LBNF/DUNE high power target development (FNAL)
 - Materials studies at BLIP (BNL)
 - Further details on many of these efforts will be discussed in subsequent talks at this workshop
- Concluding Thoughts
 - Interest in the US in technical demonstrations remains strong
 - Further funding and ability to execute significant test programs are dependent on the outcome of the Snowmass Community Planning process in the US

Thank you for your attention!

March 24, 2021

Workshop on Muon Collider Testing Opportunities

