ESS UPGRADE STUDIES

Beam physics section leader, ESSnuSB Linac upgrade WP leader

ESSnuSB has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777419

Mamad Eshraqi for ESSnuSB

2021 Mar 24-25

M. Eshraqi

PROGRESS AT ESS

2021 Mar 24-25

M. Eshraqi

ESS, ESS-Bilbao, CEA

ESSNUSB

Call/Activity: A H2020 EU Design Study (Call INFRADEV-01-2017) Title of Proposal: Discovery and measurement of leptonic CP violation usin intensive neutrino Super Beam generated with the exceptionally powerful ESS line accelerator Proposal number: 777419 Proposal acronym: ESSnuSB Funding scheme: RIA **Duration:** 4 years **Total cost:** 4.7 M€ **Requested budget:** 3 M€ **Participants:** 15 participating institutes from 11 European countries in CERN and ESS 6 Work Packages Approved end of August 2017: 2018-2021 → CDR end of 2021

	N.	Proposer name	Country
ng an		CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE	50
ncluding	1	CNRS	FR
	2	UPPSALA UNIVERSITET	SE
	3	KUNGLIGA TEKNISKA HOEGSKOLAN	SE
	4	EUROPEAN SPALLATION SOURCE ERIC	SE
	5	UNIVERSITY OF CUKUROVA	TR
	6	UNIVERSIDAD AUTONOMA DE MADRID	ES
	7	NATIONAL CENTER FOR SCIENTIFIC RESEARCH	ГІ
	'	"DEMOKRITOS"	EL
	8	ISTITUTO NAZIONALE DI FISICA NUCLEARE	IT
	9	RUDER BOSKOVIC INSTITUTE	HR
	10	SOFIISKI UNIVERSITET SVETI KLIMENT OHRIDSKI	BG
	11	LUNDS UNIVERSITET	SE
	12	AKADEMIA GORNICZO-HUTNICZA IM. STANISLAWA	PI
	12	STASZICA W KRAKOWIE	1 L
	13	EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH	CH
	14	UNIVERSITE DE GENEVE	CH
	15	UNIVERSITY OF DURHAM	UK
		Total:	

LUND TO GARPENBERG VIA ZINKGRUVAN

TOP LEVEL PARAMETERS

Design Drivers: High average beam power 5 MW High peak beam power 125 MW High availability >95 %

Key Linac parameters:

Energy	2.0 GeV
Current	62.5 mA
Repetition rate	I4 Hz
Pulse length	2.86 ms
Losses	<iw m<="" td=""></iw>
lons	р

Flexible/Upgradable design Minimize energy consumption

2021 Mar 24-25

M. Eshraqi

ESSnuSB beam:	
Energy	2.5 GeV
Current	62 mA (50 mA)
Repetition rate	14 Hz (x 4)
Pulse length	<3.5 ms
Losses	<iw m<="" td=""></iw>
lons	H-

ESSNUSB LAYOUT

M. Eshraqi

SHEET NOTES

The function of this drawing is to show the preliminary layout of ESS plant and its boundaries as well as a possible layout of the ESSnuSB facilites. Purple lines represents boundaries of ESS. Brown lines represents the ESS plot-end. Location of windmill and lakes are not exact, but are near the real positions. Direction of neutrino target and beam are not final. This is a proposed layout. Beam now pointing 11.8° from north (towards Garpenberg). Units in mm. ANVING TYPE: TITLE SUPPLEMENT AT ASSY WEIGHT: - kg ASSY WERKHT: - K8 Layout Darwin General Reinsteine FSSee(SB pro Their Petersonal, ISO 2768-mK Dissertion of Derrice, American (ISO 2768-vK) Izstmerijehanst GENERAL SURFACE FINISH Mar. Ro 32 Cruster Darbeit GENERAL SURFACE FINISH Mar. Ro 32 ESSnuSB project rasmusjohansson CHANNE DEDER ESS-1165084.2
 ESS-1103/084.2

 unecreat value

 Preliminary

 1.0

 1/1

 Inveror wavaurm

 Level A

 M4

 90

 1:1200

 Produced to ISO 1101, 8015 and 1302
ttian protection as per ISO 16016

Rasmus Johansson and Nick Gazis

H-TRANSPORT AND LOSSES

PULSING IN THE LINAC, RING AND TARGET

M. Eshraqi

• Possibility of merging the two beams at 70 Hz (cases B and C).

- B field: 0. I T
- Bending radius: 400 mm
 - pole gap: 100 mm
- A coil with 100 turns
 - ▶ Inductance: 17 mH
 - possible to switch at 70 Hz
- Power supply:
 - Current: 80 A
 - Voltage: I70 V

Håkan Danared, Björn Gålnander

MODULATOR

- Two different power upgrades for the modulators have been studied:
 - Using the SML modulators of ESS and upgrading the capacitor chargers
 - Using the SML modulators of ESS and adding pulse transformers for the H- beam

Scenario	Solution	Eta	Investme nt cost [M€]	Electricity cost per year [M€/y]	Increased system footprint [m²]	Total system height [m]	H [−] pulse rise time [µs]
Α	SML upgr.	0.82	3.4	4.6	0	3.1	< 120
В	SML upgr.	> 0.80	3.4	4.8	0	3.1	< 80
	SML + PT	> 0.80	26.3	4.8	< 2.5 x 1.5	2.4	60-120
C	SML upgr.	> 0.71	13.4	6.7	0	3.1	< 170
	SML + PT	> 0.72	26.6	l 6.5	< 2.5 x 1.5	2.4	50-120
Baseline	SML	0.82	N/A	7.30	N/A	2.6	N/A

Max Collins and Carlos Martins

ACCUMULATOR DESIGN

Main challenges

- Beam loss control due to very high beam power
- Space-charge tune shift due to very high beam intensity
- Instabilities (e-p instability) ٠

Main design requirements

- Ring circumference: ~ 400 m
- Injection turns: ~ 600
- Extraction gap: ~100 ns
- Total beam loss (I W/m): <10-4
- Collimation efficiency: >90%
- Space-charge tune shift: <0.1

Lattice design

- Developed by Horst Schönauer at CERN
- Circumference: 384 m
- 4-fold symmetry
- 4 straight sections (SSI~SS4) and 4 arc sections (Arc)
- Fixed injection chicane and fast programmable bump for injection paintir

Maja Olvegård, Ye Zou

BEAM INJECTION

Foil stripping and laser stripping

- Foil stripping: widely used in proton synchrotrons or accumulators, very challenging due to high power
- Laser stripping: a promising alternative method

Painting

- Mitigate space charge issue
- Mitigate foil temperature issue

Foil temperature issue mitigation

- Mismatch injection
- Splitting the foil along beam direction
- Moving injection point

• Painting to quasi-uniform beam, with 100% emittance of 60 π mm mrad in both planes •Very small tune spread (~0.05) • Foil temperature under 2000 K

600

500

400

300

200

BEAM COLLIMATION

• Two-stage collimation system:

- A thin primary collimator to scatter beam halo particles
- followed by a set of secondary collimators at optimal locations to absorb the scattered particles

Materials:

- Primary: Tantalum
- Secondary: Tungsten or Copper

• Thickness/length:

- Primary: 6 mm
- Secondary: I.5 m

• Collimator acceptance:

- Primary/Secondary: 70/120 π mm mrad
- Optimal phase advances between primary and secondary collimators to maximize interception efficiency
- Numerical simulations to evaluate the performance of the collimation system

M. Eshraqi

Beam loss map

BEAM EXTRACTION, RF AND SWITCHYARD

Beam extraction

- Single-turn extraction system is designed to extract the full beam in a single turn after accumulation
- Fast magnets (kickers) to extract the beam vertically out of the ring during the extraction gap of 100-130 ns
- Horizontal deflector (septum) to deflect the beam by 16.8 deg to the start of the extraction line

Challenges

- Loss-free extraction \Rightarrow optimize aperture sizes
- Rise-time of kickers \Rightarrow aperture size, B-field, technology

M. Eshraqi

RF cavity

- RF cavity to keep the extraction gap clean while keep energy spread small
- Barrier bucket is chosen due to its very small leakage risk and small energy spread (±0.15%)
- Aperture optimized to make rise-time requirement easier to reach

Switchyard

Switch and direct the beam pulses to the 4 horns

A. Alekou, I. Efthymiopoulos, Y. Zou, E. Bouquerel

TARGET STATION DESIGN

Eric Baussan

HADRONIC COLLECTOR

• Packed Bed Target

- Power 1.25 1.6 MW
- Potential heat removal rates at the hundreds of kW level
- Helium cooling (10 bars)
- Separated from the horn

Focusing System

- 4-horn/target system to accommodate the MW power scale
- Solid target integrated into the inner conductor : very good physics results but high energy deposition and stresses on the conductors
- Best compromise between physics and reliability

Horn parametrization based on Genetic Algorithm

ESSNUSB NEUTRINO FLUX

Ele

	Positive Pola	rity	Negative Polarity		
	N (1E10 1/m ²)	%	N (1E10 1/m²)	%	
Muon neutrino	583	98	23.9	6.55	
uon anti neutrino	12.8	2.1	340	93.2	
Electron neutrino	1.93	0.3	0.08	0.02	
ctron anti neutrino	0.03	0.01	0.78	0.21	

M. Eshraqi

ESS Upgrade Feasibility

SUMMARY

- The ESS project has seen good progress, with RFQ beam commissioning planned for early summer **ESSnuSB** received funding to study the feasibility of ESS linac upgrade from 5 MW to 10 MW to deliver 1E23 p.o.t/yr
- for neutrino oscillation studies

• Linac upgrade

- The ESS linac lattice is capable of accelerating and transporting the H- beam with minimal stripping losses, such that the total losses of p and H- remain within I W/m
- H-loss phenomena have been studied, and the transfer line to ring designed to respect the loss limits • The ESS's stacked multi-layer modulator has the capability to be upgraded for the ESSnuSB

Accumulator

- An ring with 4 fold symmetry, collimation and RF section is designed to accumulate the high charge beam Different injection paintings have been studied to manage the stripper foil heating and uniform charge distribution
- and a fast extraction system has been designed

• Target

- A target capable of receiving 4 x 1.6 MW, 2.5 GeV proton beam and a dedicated horn is designed • The power supply is designed to deliver high current short pulses (350 kA x 16 x 14 Hz) Near and far detectors, cavern, civil engineering, and infrastructure were not covered in this talk

ESS Upgrade Feasibility

Acknowledgments:

Most of the content is provided by my colleagues within the ESSnuSB collaboration, only some of the names are mentioned in the slides.

ESSnuSB has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777419

