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Outline

Overview of a Muon Collider
Concept of ionization cooling

Two-class of cooling schemes considered for a Muon
Collider

— Early stages: 6D Cooling schemes

— Late stages: 4D cooling schemes

Realistic implementation of a cooling channel




Muon Collider as viewed by MAP
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* The desired 6D emittance for a Muon Collider (MC) is 5-6
orders of magnitude less from the emittance of the muon
beam at the production target

« As a result, significant “muon cooling” is required.




Cooling as viewed by MAP
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MW-Class Target

* Front-end produces 21 well aligned muon bunches

« Two sets of 6D cooling schemes
— One before recombination (trans €=1.5 mm)

— One after recombination (trans €= 0.30 mm or less)

* Final cooling to shrink trans € by an order of magnitude more




Cooling baseline

6 Variations possible
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lonization cooling formalism (1)
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The basic principles of the application of “ionization cooling” 1o obtain high phase-space density muon
beams i and its li i i I i0s are presented. Applications of

cold muan beams for high-cnergy physics are described. High-luminosity g "~ and u-p colliders at more
than 1-TeV energy are possible. ' S e e p
.
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Large ‘ mall emittance
emittance

Momentum loss is Momentum gain
opposite to motion, is purely longitudinal
D, Py, Py, AE decrease
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lonization cooling formalism (2)

Cooling term | Stfaggling term
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« Longitudinal cooling: 4% _ _, \ds) , @ <AEms>
ds 0E F ds

« Cooling occurs only if derivative:
(%) Incident Muon Beam

—a‘if >0
Evacuated

lonization loss does not naturally Dipale Maghat
provide adequate longitudinal Aplp
cooling

Can be enhanced, If it is arranged
that high energy muons lose more Wedge
energy than low energy ones. Absarben




Cooling schemes

« Historically many schemes have been explored. This talk
will focus in a few — mostly the recent ones (last decade)

« 6D Cooling
— Helical FOFO snake channel
— Helical cooling channel (HCC)

— Rectilinear vacuum cooling channel (VCC)

* Final cooling
— A high field solenoidal channel ~30 T

— A parametric resonance ionization cooling (PIC) scheme




FOFO snake: Design
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coils: R,;=42cm, R,,=60cm, L=30cm; RF: f=325MHz, L=2x25cm; LiH wedges
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« Transports and cools muons of both signs

« Consists of a set of rotating solenoids that are tilted to
provide a small dipole field




FOFO snake: Performance
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Helical channel : Design

: Red: Reference orbit
2% Blue: Beam envelope

. \
7z |
l‘ I
4
/
VY
\
\ \
N
g \,
,

« HCC is filled with hydrogen gas that acts as a continuous
absorber

« HCC is composed of a solenoidal field with superimposed
helical transverse dipole & quadrupole fields.

* Energy loss, energy regeneration, emittance exchange, and
longitudinal and transverse cooling happen si

-




Helical channel: Performance

« Demonstrated significant cooling and good transmission

« (Gas was opposing cooling to below ~ 0.58 mm on the other
hand, HCC can cool to a lower longitudinal emittance since it
was not prone to space-charge limitations (see later)
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Rectilinear channel: Design (1)
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« Straight geometry simplifies construction and relaxes
several technological challenges

« Multiple stages with different cell lengths, focusing fields, rf
frequencies to ensure fast cooling




Rectilinear channel: Design (2)
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325 MHz coils
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Rectilinear channel: Design (3)
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Rectilinear channel: Performance

Complete end-to-end simulation from the target (point 1) |

6D emittance reduction by five orders of magnitude (point 5)
Achieved emittances and transmissions specified by MAP

Overall distance ~ 900 m ' End-to-End to simulation”

phase-rotation
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Rectilinear: Magnet technology
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Stage No.
We set two constrains in our (initial) design:
— Peak fields on coils don’t exceed Niobium Tin limits

— Cauvities within> 1 T operate at 50% of the achievable gradientatO T




Rectilinear with HTS magnets
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Final Cooling: High field magnets

P

Simulated the distribution coming out of the rectilinear channe

Showed that using 30 T magnets the emittance can be
reduced near the regime needed for a MC. Transm|SS|on
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Final Cooling: PIC Method

PR

« Parametric resonance ionization cooling (PIC) scheme, a
half-integer resonance is applied to excite the phase space
In hyperbolic motion (top right picture).

« As aresult, the achievable transverse emittance is lower
than the conventional cooling channel, and independent
from strength of magnetic field

Concept of PIC
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oscillation a half-integer resonance
50 100 150
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Design and feasibility questions

P

-Lattice Design

Cooling of muons of both signs is a bonus. How far can we push the FOFO
snake or a similar channel?

Would a higher rf gradient make the cooling channel shorter? Would
Integration of optimization algorithms help? [Delalls]

How far can we push the rectilinear using HTS magnets?

RF Cauvities

— Can we operate vacuum rf cavities in magnetic fields? [Details]
— Is it possible to construct a Be based cavity?
— What is the appropriate thickness and shape of rf Be windows?

Absorbers
— What are realistic shapes of a LH “wedge” absorber? [Detalls]
— What is their tolerance on MC beam intensities?

Beam dynamics
— Impact of collective effects on beam cooling [Details]




Design and feasibility questions

Magnets [Delalls]

— Current densities are near the limits of Nb3Sn. Other magnet technologies?

— Are forces & stresses in coils acceptable? What are the coil tilting tolerances?
* Required instrumentation and assembly [Detalls]

— ldentify required diagnostics & how to operate them under cooling environment
— Design space for integrating them
— Space for waveguides — appropriate space between coils and rf - Engineering

design

 Further cooling tests [Detalls]
— Are there facilities to further explore cooling?




Summary

Several cooling schemes have been designed and
simulated with very promising results

Its important to emphasize that most were paper studies
without a detailed engineering study to see if their
configurations were feasible.

Most work on these has stopped ~ 2015. In the meantime
several progress has been made in rf and magnet
technology as well as in the development of “smart”
algorithms for lattice tuning

One step forward is to revisit the old designs and see if we
can make them better with the new conditions by taking
Into account engineering considerations. Devil is in the
detall.




Further related work

Neutrino factory cooling

— D. Stratakis and D. Neuffer, Journal of Physics G: Nuclear and Particle
Physics 41,

Helical cooling channel
— K. Yonehara, JINST 13, P0O9003 (2018)

Final cooling
— H. Sayed, Phys.Rev.ST Accel.Beams 18, 091001 (2015)

Bunch merger
— Y. Bao, Phys. Rev. Accel. Beams 19, 031001 (2016)

Helical FOFO Snake
— Y. Alexahin, JINST 13, P08013 (2018)




Magnet technology
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Influence of space-charge

[BACK]
At the end of cooling, 5x10% muons are squeezed within a 2
cm rms bunch. There is a concern for space-charge (SC)

Simulation revealed that SC causes particle loss &
longitudinal emittance growth
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Modular cavity test: A game changer

2% (Cu, Al, Be)

Material B-field (T) SOG (MV/m) BDP (x107%)

PHYSICAL REVIEW ACCELERATORS AND BEAMS 23, 072001 (2020) Cu 0 244 +£0.7 1.8 £0.4
Cu 3 129+04 0.8 £0.2
Operation of normal-conducting rf cavities in multi-Tesla magnetic fields Be 0 All+2.1 1103
for muon ionization cooling: A feasibility demonstration Be 3 >498£25 0.2 +0.07
D. Bowring®, A. Bross, P. Lane®, M. Leonova, A. Moretti, D. Neuffer®, R. Pasquinelli, BC/CU 0 43.9+0.5 118 + 1.18
D. Peterson®, M. Popovic, D. Stratakis, and K. Yonehara Be / Cu 3 10.1 £ 0.1 048 +0.14

Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

« A Beryllium based cavity sustained a high gradient in the
oresence of multi-tesla B-fields!




. Simulate with higher gradients
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Increasing the rf gradient can reduce the length of the

cooling channel




Emittance exchange for the Muon g-2
Experiment

. Proof-of-principle experiment: Demonstrated 8% gain [BACK]
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PHYSICAL REVIEW ACCELERATORS AND BEAMS 22, 053501 (2019)

PR I T S S S 't I 1 P
5 0 ’ Application of passive wedge absorbers for improving the
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Diktys Stratakis
Fermi National Accelerator Laboratory, Batavia, lilinois 60510, USA
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Engineering design

First Stage =% Last Stage

Bellows 2 cavities missing between each cryostat
hydrogen wedge vaveguides
325 MHzrf  absorber Gate valve 650 MHz rf

— " ———
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between each cryostat

nitrogen shield
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L

. . bellows
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L
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Design of cryostats
1. Approximately 6 cells (or half cells in early stages) are housed in shared cryostats
2. The strict periodicity of focus coils is maintained
3. Space to separate cryostats is made by either
a) omitting hydrogen absorbers (in early stages) and reducing local rf gradients, or

b) omitting some of the rf cavities (in a late stage) and shortening,
or omitting a hydrogen absorber

4. The space gained can be used for diagnostics and allows
installation or removal of a cryostat without disturbing any others.

Dis-assembly for repair or replacement
1. Close gate valves on either side of cryostat
Let air into space between near gate valves

open flange between them

2
3
4. Pull flanges apart and remove complete cryostat laterally
5

Dis-assemble 1in clean room if necessary

February 20, 2014 D. Stratakis | DOE Review of MAP (FNAL, February 19-20, 2014)



Wedges vs. Cylinders
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 For LH absorber it is easier to construct a
cylindrical absorber

« Slightly degrades cooling




