Magnet Challenges for Muon Colliders

Soren Prestemon Lawrence Berkeley National Laboratory

Magnet Challenges for Muon Colliders Soren Prestemon

1 2

- Overview key elements of a muon collider
- Magnet-related issues along the collider path
- Some magnet design paradigms to consider
 - Development & demonstration
 - o Magnets for intermediate facilities & for final collider
- A review of key magnet-related challenges

Overview of a Muon Collider

BERKELEY LAB

• Magnets are central to target & front end, cooling, acceleration, collider ring

Boscolo, Delahaye, Palmer https://doi.org/10.1142/9789811209604 0010

- The MAP study identified key R&D challenges
 - o See Palmer's talk yesterday
- Central elements: high field solenoids, fast ramping*, radiation env.

	Issues	Status
Target	Multi-MW Targets High Field, Large Bore Capture Solenoid	 Ongoing >1 MW target development Challenging engineering for capture solenoid
Front End	 Energy Deposition in FE Components RF in Magnetic Fields (see Cooling) 	Current designs handle energy deposition
Cooling	 RE in Magnetic Field High and Very High Field SC Magnets Overall Ionization Cooling Performance 	 MAP designs use 20 MV/m → 50 MV/m demo >30 T solenoid demonstrated for Final Cooling Cooling design that achieves most goals
Acceleration	 Acceptance Ramping System Self-Consistent Design 	 Designs in place for accel to 125 GeV CoM Magnet system development needed for TeV-scale Self-consistent design needed for TeV-scale
Collider Ring	 Magnet Strengths, Apertures, and Shielding High Energy Neutrino Radiation 	 Self-consistent lattices with magnet conceptual design up to 3 TeV > ~5 TeV – n radiation solution required
MDI/Detector	 Backgrounds from ∞ Decays IR Shielding 	 Further design work required for multi-TeV Initial physics studies at 1.5 TeV promising

Key issues: Target/front end

McDonald et al., IPAC2014

- Tapered field capture solenoid
- Challenges:
 - ~20T solenoid field
 - o High radiation environment
 - o Likely inaccessible for hands-on maintenance
 - Large stored energy
 - o Stray fields
- Mitigations:
 - Optimize bore vs radiation load
 - e.g. Tungsten shielding?
 - o CICC technology may be appropriate
 - o Active shielding (if necessary)
 - Synergies with
 - NHMFL high field solenoids
 - FES central solenoid developments
 - But leverage DC nature of field

Zisman, TAS VOL. 18, NO. 2, JUNE 2008

BERKELEY LAB

Technology options

NHMFL Series connected hybrid Outsert: (~13T, 610mm ID)

BERKELEY LAB

6

Key issues: Cooling

- Multiple cooling sections needed to reduce the beam phase space
 - Longitudinal =>large momentum-acceptance acceleration and storage
 - Transverse=>need rapid 4D (some 6D) cooling=>solenoids 0
 - For collider, need small energy spread=>6D final cooling 0
- Ionization cooling:
 - Requires strong solenoid fields for focusing 0

Cooling

- Large bore to accommodate (room temp) absorbers and RF
- Challenges:
 - Requires HTS for fields >~20T 0
 - "Bucking" solenoids require croystats/structures to react 0 forces

Achieved (simulations)

Helical channel has significant structural complexities 0

Boscolo, Delahaye, Palmer

DEPARTMENT OF

Key issues: Acceleration

- Classic approach:
 - synchrotron-based ramp magnets in concert with RF acceleration
 - Challenges:
 - dB/dt induces...
 - heat in conductor (AC losses); =>impacts performance $J \leq J_c(B,T)$
 - Magnetization in superconductor (=>field errors)
 - Eddy currents in associated conductive materials (=>field errors)
 - Fatigue considerations drive many design considerations
 - Cycle time drives collider performance
 - Mitigation approaches:
 - Laminations in all conducting materials (where possible)
 - Small filaments in superconductor
 - Reduce contact resistance between strands
 - Or different paradigms, e.g.

Office of

Science

- FFAG or similar the holy grail is to...
 - Eliminate ramping
 - Maximize muon momentum acceptance
 - Store beams of varying energies simultaneously

Volpini et al., TAS 2011

WIRE MAIN CHARACTERISTICS				
Diameter after coating	0.825 ± 0.003 5 +0.5 -0	mm mm		
Effective Filament Diameter	1^{st} generation ≤ 3.5 2^{nd} generation ≤ 2.5	μm μm		
nterfilament matrix material	Cu-0.5 wt% Mn right handed (clockwise)			
c @ 5 T, 4.22 K	> 541	А		
Stabilization matrix	Pure Cu	~		
o _t at 4.22 K Cu+Cu-Mn : Nb-Ti ratio (α)	$0.4 \pm 0.09 B[1]$ >1.5 ± 0.1	nΩ∙m		
Surface coating material	Staybrite (Sn-5 wt% Ag)			

Willering et al., TAS 2008

Non-ramping options are intriguing

- Fixed field configurations can they work?
- Non-scaling FFAG
 - o "built for Muons"

CBETA - Trbojevic et al., IPAC2017

EMMA - Machida et al., Nature Physics, 2012 55.50 55.45 Orbital period (ns) 55.40 55.35 55.30 55.25 12 20 Momentum (MeV/c)

Qiang, Brouwer, Teyber, PRAB 2021

AB

Key issues: Collider ring magnets

- Dipoles, quadrupoles for main ring
- Interaction region magnets
- Significant work has been done on ~1.5TeV muon collider ring concepts
- Major considerations:
 - Compact ring enables increased collision rates and hence physics =>Compact implies higher field dipole
 - Apertures of 5-sigma are considered acceptable
 - o Significantly heat loads (SR, *Muon decay*, Muon losses)

feasible

- 0
- 0

Collider dipole magnets

Open midplane or shielding (e.g. Tungsten)

• Dipoles must address significant heat load as well as radiation load

 \Rightarrow Must extract most heat at higher temperature in order to be

Example: 2TeV (4TeV c-m) study suggested 2kW/m deposition

Cold Iron

Room Temperature

Muon Bean

300 K Water Channe

Muon Bea

300 K Water Channe

0

0

0.15

0.1

0.05

0.15

0.1

0.05

Interaction region magnets

- IR quads operating at ~11-12T
 - Large bore (~150mm)
 - Parameters are similar to HL-LHC quads
- IR Dipoles
 - **o** Need to tolerate high radiation
- - =>Large bore, or open midplane

Similar, but HL-LHC quads allow for a Tungsten shield!

Alexahin et al., PTSTAB 14,2011

Magnet design paradigms: Dev. & Dem.

- *Development*: steady, rigorous R&D that provides the building blocks for a technology
- *Demonstration*: Application of technology from current R&D status to illustrate (demonstrate) capability
- The two have different aims and are best not fully intertwined!
- A Demonstration often has the benefit of introducing systems engineering aspects that are a critical step towards facilities
 - But it does not allow the critical "try-fail-learn" iterations needed for successful R&D

- There can be a conflict between magnet designs for intermediate facilities and for a final collider can choose:
 - Use intermediate facility as test bed for "final" design
 - Negative: Probably "sub-optimal" design
 - Positive: Builds confidence, avoids investing in "one-off" design
 - o Or, build magnets tailored to intermediate facility requirements
 - Usually more cost effective in near-term
- Example of MICE:
 - Full facility would use liquifiers, possibly 1.8K
 - "Intermediate facility" used cryocoolers (=>single strand, low current)

- Beam optics & magnet design
 - should be communicate closely to find best compromise in magnet feasibility and overall performance
- Stresses and stored energy are major challenges in the solenoids
 - => need high current conductors (cables)
 - \Rightarrow bore size and field strength drive challenges
- Fast ramping magnets incur major technical challenges:
 - o AC losses dictate...
 - specialized conductor specifications
 - Specialized support structures
 - Specialized cooling systems
 - =>Explore feasibility of non-ramping options in parallel
- Radiation loads are significant need clear design protocols and relevant testing campaigns

Electrical and mechanical integrity over time is a major concern!

 $E = \frac{1}{2}LI^2$

16

• Core elements:

- High-field solenoid development
- Large bore dipole technologies
- Fast-ramping dipoles optimized in pulse duration, frequency, field
- Understanding radiation environment and appropriate materials
- High-risk / high-reward element:
 - Non-ramping magnet/optics solutions for acceleration

Backup

• We are about to put Nb₃Sn into a collider for the first time, and are investigating the potential of HTS

Magnet Challenges for Muon Colliders Soren Prestemon

In the US, a collaboration is focused on magnet technology for future colliders

The Updated Roadmap for MDP is publicly available <u>https://arxiv.org/abs/2011.09539</u>

- Major themes of the updated Roadmaps:
 - **Explore the potential for stress-managed structures** to enable high-field accelerator magnets, i.e. structures that mitigate degradation to strain-sensitive Nb₃Sn and HTS superconductors in high-field environments;
 - *Explore the potential for hybrid HTS/LTS magnets* for cost-effective high field accelerator magnets that exceed the field strengths achievable with LTS materials;
 - *Advance magnet science* through the rapid development and deployment of unique diagnostics and modeling tools to inform and accelerate magnet design improvements;
 - *Perform design studies* on high field accelerator magnet concepts to inform DOE-OHEP on further promising avenues for magnet development;
 - *Advance superconductors* through enhanced performance, improved production quality, and reduction in cost all critical elements for future collider applications.

Magnet Challenges for Muon Colliders Soren Prestemon

20

U.S. MAGNET

PROGRAM

LBNL, FNAL, BNL, ASC/NHMFL

DEVELOPMENT