MDI and Detector

Donatella Lucchesi University and INFN of Padova for the MuonCollider-Detector-Physics Group In particular: N. Bartosik, M. Biagini, F. Collamati, C. Curatolo, S. Guiducci, A. Mereghetti, N. V. Mokhov, M. Palmer, P.Sala and MAP Collaboration

Interaction Region and MDI Design

The high luminosity requires:

- Low beta-function at the IP (few cm)
- **•** High number of muons per bunch $(N_{\mu} \sim 2 \cdot 10^{12})$

Muons decay particles…back of the envelope evaluation:

beam 1.5 TeV $\lambda = 9.3 \times 10^6$ m, with 2×10^{12} μ /bunch $\Rightarrow 2 \times 10^5$ decay per meter of lattice.

Beam induced background, if not properly treated, could be critical for:

- Magnets, they need to be protected.
- People, due to neutrino induced radiation.
- **Detector, the performance depends on the rate of background particles arriving to each subdetector.**

A holistic approach is needed, tight together the development of the IR optics, the magnets and the shielding strategies (magnets and detector).

Optimization of Interaction Region at $\sqrt{s} = 1.5 \text{ TeV}$ These issues as well as well as well as well as well as well as ω as ω as ω

Fermilab-Conf-11-094-APC-TD Y.I. Alexahin et al. Muon Collider Interaction Region Design FERMILAB-11-370-APC N.V. Mokhov et al. *Muon collider interaction region and machine-detector interface design*

in the coils and in the inner part of the detector. \mathbf{p} Quadrupoles in $Nb₃Sn$ characteristics in the papers. Dedicated dipoles to minimize the number of decay electrons

 $p)$ and

 $s(m)$

Optimization of Interaction Region at $\sqrt{s} = 1.5$ **TeV with absorbers**

Important role is played by the absorber materials

Deposited power density in Q1 (mW/g)

nozzle inside quadrupoles oles of 0.1 of their aperture FIG. 6 (color). Deposited power density in Q1 (mW/g) for three cases: "standard" (left), with absorbers inside (center) FIG GGGdgr). Deposited power density in UmpWe for three cases: "standard" (left z with absorbers inside (center nozzle

 \mathcal{A} it follows from Table 4, the traditional cos \mathcal{A} μ ponatena Lucchesi

IR and Detector background

A: no masks between magnets, 6° cone with a 5σ radius liner up to 2 m from IP; **B:** 5σ masks inserted between FF quads, cone angle 10°, 5σ liner up to 1 m from IP; **C:** same as above plus FF quad displacement.

Results:

- Masks and increased cone angle reduce e^{\pm} and γ fluxes by factors 300 and 20.
- Displacing FF quads increases e^{\pm} flux by up to 50% decreases γ flux by factor 15

Donatella Lucchesi

Further Detector Nozzle Optimization

 $\frac{1}{2}$ and $\frac{1}{2}$ a For example, gamma flux as a function of the angle of inner cone opening towards IP at the outer cone angle of 10°

FIG. 9 (color). Gamma flux vs. inner cone angle at

10⁰ nozzle geometry **General view** $(600, 60)$ $R, cm₁$ Zoom in beam pipe (Z,R) 600.50 Z, cm $(6.25, 2.2875)$
 $(6.25, 2.24)$ **BCH2** 13.762. 2.37322 $(0, 2.24)$ 3.2334, 2.27969) $(6.25, 2.2)$ $(0, 2.2)$ $(100, 17.6)$ $(200, 17)$ 0.151 W W $(600, 1.78)$ Be $(100, 0.3)$ W – tungsten R.cm. **Be-beryllium** (Z,R) **BCH2** – borated polyethylene $(15, 0.6)$ Z.cn

These studies have brought to the final nozzle configuration

Beam-Induced Background study Deam-Induced Dackground study

Produced with MARS15: particles arriving to the detector.

Further Detector Nozzle Optimization

IR elements and geometry produced by LineBuilder visualized by FLAIR

Beam Pipe aperture, coil transverse dimensions, materials...

- MAP optic files.
- Details on magnets material and passive elements are also needed

Visualization of all the elements of the IR

NozzleBR

Complete IR Design

Comparison MARS15 - FLUKA computed the iterative task of MDI optimization will rely on a problem interpretation of the Monte State of

Donatella Lucchesi

Comparison MARS15 - FLUKA

One beam, μ^- of 750 GeV with $2 \cdot 10^{12}$ particles/bunch

Results in details

One beam, μ^- of 750 GeV with $2 \cdot 10^{12}$ particles/bunch

Beam-Induced Background Origin

One beam, μ^- of 750 GeV with $2 \cdot 10^{12}$ particles/bunch

Given the BIB, how do we design the detector?

Tracker at \sqrt{s} = 1.5 TeV

Tracking performance have been studied applying timing and energy cuts on clusters reconstruction compatible with IP time spread.

Vertex detector properly designed to not $\frac{1}{\sqrt{1-\frac{1$ overlap with the BIB hottest spots around the interaction region.

Calorimeter at \sqrt{s} =1.5 TeV

BIB deposits large amount of energy in both ECAL and HCAL

Is this the end of the story?

Table 2 1012. Number of BIB particles from MARS15 file "mumi-1e3x500-26"

Previous St Detector Bac Collider: MA factor \sim 2 He

Sources of differences:

- Different materials between MARS and FLUKA?
- Passive materials, do we have all the absorbers?
- Intrinsic differences MARS15 vs FLUKA? Generate BIB

Lattice improvements

- Add collimators to remove secondary muons coming from very fa
- Further optimization of absorbers and nozzle?
- **•** Further optimization of magnets aperture and liner?

Università **DEGLI STUDI** DI PADOVA

To conclude

- \triangleright Simulation and analysis tools to optimize MDI are ready and well tested.
- Ø Benchmark Monte Carlo? Test with data?
- \triangleright Nest step is nozzle optimization at $\sqrt{s} = 3$ TeV where the IR lattice is well tuned. Work is already in progress.

Strong collaboration between accelerator and detector physicists is mandatory for the proper MDI design.

