

www.cern.ch

Proton Facilities at CERN With some brainstorming S. Gilardoni – SY/STI

In collaboration with: M. Calviani (SY/STI), I. Efthymiopoulos (BE/ABP), J. Bernhard (BE/EA) March 2021

What could be tested? Why? Where?

Proton driver

- Single beam impact
- Material damage
- Obs: Linac4 is running

Cooling

- Material testing
- 6D cooling

Target station – including dump

- Material choices for p production
- Pion production
- Single beam impact
- Material damage

Acceleration

- Material testing (damage)
- Acceleration techniques
- Recombination

Lemma discussed yesterday

What could be tested? Why? Where?

Proton driver

- Protons
- Few GeV

Cooling

- Muons
- Few hundreds MeV/GeV

Target station – including dump

- Protons and mixed field
- Few GeV protons
- Few hundreds MeV mixed field

Acceleration and SR

- Muons at some GeV
- Muons at some TeV

Lemma discussed yesterday

CERN accelerator complex as now

Different test zones

Existing test/experimental areas – already available for beam tests

- PS-EAST area
- SPS-North Area
- Hiradmat
- Charm

Possible test areas – will be available soon or requires modifications

- ISOLDE ISIS
- n_TOF Near
- Beam dump locations (Linac4, PSB, ISOLDE, PS, LHC(?))

Green field solution

- New test areas
- New machines to test

Synergies with other projects

- FCC
- PBC
- ISOLDE renovation

Questions: single particles, bunched beam, single impact, irradiations?

LINAC4 - layout

Vertical step to connect to LT, LTB and BI lines

- Intermediate energies are not accessible however something learned from installed equipment
- Chopper dump designed for SPL-like operation

Some investigation to use 3 MeV test stand for material testing

Linac 2

in Linac2/PS tunnel

Linac4 Parameters – For reference

March 2021

	CDR Design Parameters	Goal Po Parame	ost-LS2 eters		
Ion Species	H-	H-			
Output Energy	160 MeV	160 Me	\checkmark		
Bunch Frequency	352.2 MHz (LEP!)				
Max. Repetition Rate	2 Hz			Require only 0.833 Hz	
Max. Beam Pulse Length	400 µs @ 0.833 Hz	► 600 µs (@ 0.833 Hz		
Max. Beam Duty Cycle	0.08%	0.12%		Chopping at 3 MeV for ~loss-free injection inter-	
Chopper Beam-on Factor	~65%	Max. ~65%		the PSB RF bucket (~630 ns beam ON)	
Source Peak Current	80 mA	~60 mA			
Linac Peak Current	65 mA	► 40 mA			
Linac Chopped Current	40 mA	26 mA	RF structures dime	ensioned for 50 Hz.	
Transv. Emittance (Source)	0.25π mm mrad		power supplies, electronics, electricit cooling for 2 Hz		
Transv. Emittance (Exit)	$0.4 \ \pi \ mm \ mrad$	0.4 π m	m mrad		
CERN S. Gilardoni				7	

Linac4 - LBE Line

CERN accelerator complex

PSB main features

- Injection
 - ▶ 160 MeV H⁻
 - Multiturn charge exchange injection with transverse and longitudinal painting up to thousand turns
- ► 4 superimposed ring magnetically coupled
- ► Lattice: Triplet, FDF
 - Operating below transition
- Acceleration cycle
 - ~ 700 ms
 - 1.2 cycling period
- RF: Finemet
 - Operation with h=1 and h=2
- ► Extraction:
 - ▶ 2 GeV (1.4 GeV)
 - Single turn fast extraction with vertical recombination
- Particles types:
 - Protons, (lons O, S, In, Xe)
- Max total intensity: ~ 4e13 ppp
- ► External Exp. Area: ISOLDE

PSB Dump

To be studied: accessibility to an operational machine

Design parameters:

- Max beam intensity: 1E14 p+/pulse
- Beam energy: 2 GeV
- Pulse period: 1.2 s
- Max. Average power to dump : 9.44 kW

A. Perillo-Marcone - RaDIATE 2018

ISOLDE : Radioactive Ion Beam facility

Rare isotope production

- Isotope production from proton interacting in a target
- Atoms migrates from the target to the front-end
- Once ionized they are transported to the users
- Different target materials produce different isotopes
- Isotopes can be post accelerated

Muon collider Workshop S. Gilardoni March 2021

13

.....

First mercury target experiments@ISOLDE

• Successor could be a LIEBE like test with Pb-Bi if not in Hiradmat.

Mercury cannot be used anymore

See M. Calviani presentation

ISOLDE beam dump renovation

ISOLDE Beam Dump Replacement Study launched in view of

 Brainstorming on requirements and opportunities when reconstructing the area (accessibility, safety, overcome beam intensity/energy limitations....)

New irradiation station?

BEAM DUMP GPS

A.- P. Bernardes presentation @ EPIC workshop

CERN accelerator complex

PS main features

- Injection
 - 2 GeV protons
 - ► 70 MeV/n lead ions
 - Single turn injections
- ► Lattice: FODO with combined-function magnets
 - Transition crossing with gamma-jump at 6.1 GeV
- Acceleration cycle
 - Up to 3.6 s depending on final user
 - 1.2 cycling period
- ► RF:
 - 10 MHz ferrite loaded main RF system
 - > 20, 40, 80 MHz for LHC beams production
 - 200 MHz for beam recapture after de-bunching
 - ▶ h=7, 8,16, 21, 42, 84,168
 - Finemet as longitudinal feedback system
- Extraction:
 - ► Fast extraction at 20 GeV and 26 GeV
 - Multiturn (5 turns) extraction at 14 GeV
 - Slow extraction 24 GeV
- Particles types:
 - Protons, Ions (Pb, O, S, In, Xe)
 - In the past: anti-protons, e+, e-
- Max total intensity: ~ 4e13
- External Exp. Area: East hall, AD

Experimental area : EAST HALL

Some 10⁹ protons 24 GeV/c **EAST AREA RENOVATION** slowly extracted on some 400 ms But Fast Extraction possible with intensities compatible with existing shielding 1 – 10,15,7,3.5 GeV/c secondaries some 10⁶ **PS RING** CHARM : test facility for R2E

Experimental area : EAST HALL

Possible options:

- CHARM : material irradiation (but mainly electronics)
- A new single particle cooling experiment with muons (cells)
- Think of primary proton beam fast-extracted at some GeV up to 24 GeV, think of secondary beam with a time structure

Harp used to be here

•

- Secondary beams:
 - Momentum < 15 GeV/c
 - Irradiation facilities CHARM
 and IRRAD
 - Test beamlines T9 and T10
 - T11 beamline for CLOUD experiment
 - Horizontal momentum selection
- Particle types and intensity
 - Pure electrons, hadrons, muons
 - Max. ~5·10⁶ particles per spill
- Spill structure from PS
 - 400ms spill length
 - Typically 1 spill every 18s (15bp), more on request
- Quick access from control room to experimental area (< 1 minute)
- Short cables

The n_TOF beam: neutron beam lines

- Main feature of n_TOF is the synthesis of extremely high instantaneous neutron flux and excellent energy resolution
- Unique facility for measurements of radioactive isotopes (maximize S/N)
 - Branch point isotopes (astrophysics)
 - Actinides (nuclear technology)

FTN – line : Location explored in the past for a colling experiment at CERN Same flexibility as in MERIT not possible because of n_TOF operation. Proposal by M. Calviani et al. in the framework of the PS external dump renovation with horizon LS3

NEAR

Irradiation facility summary

FACILITY	status	Radiation field	Fluence/dose	Goal - limits
CHARM	existing	Mixed, high E p, n, p	≈10 ¹¹ weekly HEH* 100 Gy/week	R2E – particle damage to electronics low fluence for materials
IRRAD	existing	Protons, 24 GeV/c	10 ₁₆ p cm-2/5 days	Detectors, electronics, accelerator component; Small irradiation spot
ISIS @ ISOLDE	In progress	Mixed field n, p, g	>2.5 MGy/y @50 cm /target	✓ Materials studies at low dose rate in mixed field
NEAR @ n-TOF	In progress	Mixed field mostly n	≈ 1 MGy/y	✓ Materials studies at low dose rate in mixed field

CERN accelerator complex

SPS main parameters

- ► Injection
 - ▶ 14 GeV or 26 GeV protons
 - 26 GeV proton equivalent Pb ions
 - Multi-batch injection from PS
- Lattice: FODO with dispersion free SS
 - Transition crossing for injection below 20 GeV. No gamma-jump
- Acceleration cycle
 - Up to 21.6 s (depending on user)
 - 1.2 cycling period
- ► RF:
 - Main system: 200 MHz travelling wave
 - ▶ 800 MHz to control longitudinal emit.
- Extraction:
 - Slow extraction at 400 GeV
 - Fast extraction at 450 GeV
- Operation in p-pbar collider mode
 - Machine on indefinite coast @ 270 GeV
- Particles types:
 - Protons, Pb, pbar, e+,e-, O, In, S, Xe
- ► Max total intensity: ~5.3e10¹³
- External Exp. Area: North Area, HIRADMAT, AWAKE, Neutrino Platform

Muon collider Workshop S. Gilardoni March 2021

March 2021

North-Area and Neutrino Platform

North Area: 400 GeV/c slow extracted protons 4.8 s spill length

Secondaries depending on the line: 10 - 400 GeV/c, up to 10⁸ particles/spill

H8

North Area beamlines characteristics

Primary mode Secondary mode

Parameters	T2		T4	
Beam Line	H2	H4	H6	H8
Maximum Momentum [GeV/c]	400 / 360	400 / 330	- / 205	400 / 360
Maximum Acceptance [µSr]	1.5	1.5	2	2.5
Maximum Δp/p [%]	± 2.0%	± 1.4 %	±1.5%	±1.5%
Maximum Intensity / spill * (Hadrons / Electrons)	10 ⁷ /10 ⁵	10 ⁷ /10 ⁶	10 ^{7 **} / <mark>10</mark> 5	10 ⁷ **/ <mark>10</mark> 5
Available Particle Types	Primary protons*** OR pure electrons OR mixed hadrons (pions, protons,kaons)			
Other / Special requests	sba-physicists@cern.ch & sps.coordinator@cern.ch			

* Imposed by Radio Protection, and not available to every zone

** In some zones can be elevated up to 10⁸ subject to certain restrictions

*** Not available in H6

HIRADMAT at **SPS**

HiRadMat (High-Radiation to Materials) : users facility designed to provide high-intensity pulsed beams to irradiate material samples and accelerator component with single or multiple beam impact at 440 GeV.

Can receive LHC type beams pulses

Muon collider Workshop S. Gilardoni March 2021

HiRadMat in a flash

- A unique, high-energy, high-intensity pulsed beam facility dedicated to targetry & accelerator components material R&D
- LHC-like proton or ions beams, with a maximum pulse intensity of 3.4x10¹³ protons / pulse can be delivered in controlled conditions and to be monitored with special instrumentation.

Additional information

HT dydrogen anional |> p (protonal |> is os |> RIBs (Radioactive Ion Beama) |> n (neutronal |> p (antiprotonal |> e (selectronal LHC - Large Hadron Collider // SFS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // SOUDE - Isotope Separator Online // REX/HE - Radioactive Experiment/High Intensity and Energy ISOLDE // LER - Low Energy Ion Ring // LINAC - LINear Accelerator // n TOF - Neutrons Time Of Hight // HRadMat - High-Radiation Io Materials

Contact: hiradmat-operation@cern.ch

Muon collider Workshop S. Gilardoni March 2021

HiRadMat Proton Beam

HIRAMAT tests interesting crystal-based schemes

E = 440 GeV $0.3x0.3 \text{ mm size} (1\sigma)$ 3 pulses with 216 bunches (~2.5e13 ppp)1 pulse with288 bunches (~3.2e13 ppp)

2 LHC crystals irradiated in HiRadMat and tested before and after in H8

Gafchromic foils for beam impact crosscheck

From M. Garattini

CERN accelerator complex

Machine development time could be accessible for beam dynamics studies, like space-charge limits in the accumulator/compressor, muon (with protons) bunch merging for the collider, etc...

Machine development time in the LHC is precious, but accessible (beam-beam, etc..)

LHC main parameters

- Injection
 - 450 GeV protons
 - Multi-batch injection from SPS
- Lattice: FODO with insertions
- Collision energy:
 - ▶ 6.5 TeV (7 TeV) per beam
- ► RF:
 - Main system: 400 MHz SC
- Operation in collider mode
 - Machine on indefinite coast
- Particles types:
 - Protons, Ions
- Max total intensity:
- ► 4 Insertions for collisions
- 4 insertions for services

Muon collider Workshop S. Gilardoni March 2021

LHC Beam parameters achieved

Parameter	2018	Design
Energy [TeV]	6.5	7.0
No. of bunches	2556	2808
Max. stored energy per beam (MJ)	312	362
<mark>β*</mark> [cm]	<mark>30→25</mark>	55
p/bunch (typical value) [10 ¹¹]	1.1	1.15
Typical normalized emittance [µm]	~ <mark>1.8</mark>	3.75
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	<mark>2.1</mark>	1.0

LHC Dump - cavern

- 350+ MJ dumped every 8ish hours:
- High energy density somehow at low power
- · Few tons of graphite jumping by few mm at every dump
- Dump instrumented with termocouples and LDVTs

Muon collider Workshop S. Gilardoni March 2021

Area not accessible during runs but space in the cavern to think about tests with 7 TeV protons

Green field – just brainstorming

One could think of building a ~few kw - 100 kW proton source based on different technology, like an FFAG, that could serve also other purposes (R2E, FCC...)

New PS Injector: FFAG

Extrapolation for scaling FFAG from RACCAM proposal Scaling FFAG for medical applications (1.7 T peak field, 6 kV RF, acceleration in ~10 ms)

Final parameters of the RACCAM 10 cell ring and magnet :

Slide from FFAG08: http://www.cockcroft.ac.uk/events/FFAG08/presentations/Meot/statusRACCAM-Meot.pdf

Extracion energy, variable	
Injection energy	
Nomentum ratio	
Number of cells	
Packing factor	
Field index, k	
Spiral angle	
Qh / Qv	2
Radius on extraction/injection orbit : dR	3.46 r
Drift length, extraction/injection orbit	1
Frev, 15->180 MeV	3.
Frev, 5.5->70 MeV	1.

South hall

Chamonix 2010 - Session 7

Other Scenarios for a partial Upgrade of the Injector Complex

Thanks for your attention

