
New e- gun (at CLEAR)

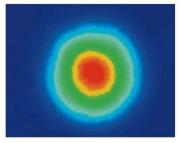
Femtosecond gun from INFN

- Will be installed at CLEAR during 2021
- Possibility of virtual and real diagnostics
- Initially with Cu cathode, eventually Cs₂Te
- Compatible load-lock system

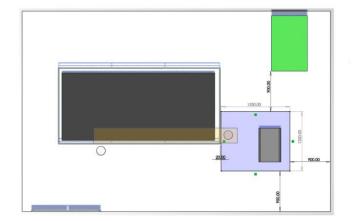
UV reflected beam (diagnostics)

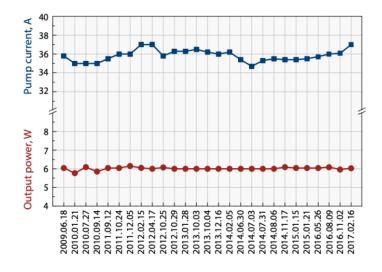

Laser system for fs e- gun (at CLEAR)

- Light Conversion Pharos system already purchased (delivery Dec 2020, integration & commissioning mid-2021)
 - Yb-doped fiber technology
- Designed to operate with both Cu or Cs2Te
- Variable pulse duration from < 300 fs up to > 5 ps
 - Requires multiple harmonic stages or UV stretcher
- Synchronizable to RF (1.5 GHz) reference
- Expected maximum charge production:
 - Cu cathode : ~ 400 pC
 - Cs₂Te: > 1 nC

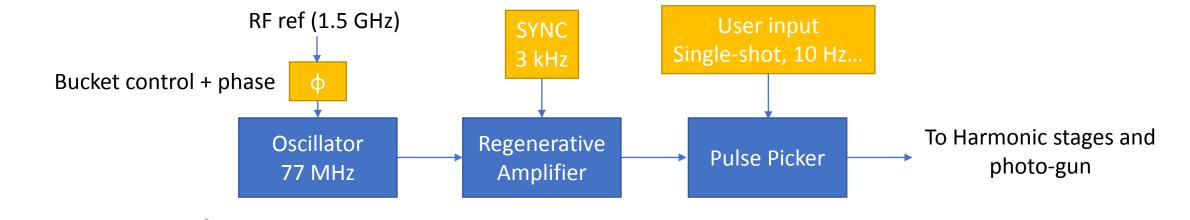

Pulse energy @ 1030 nm	2 mJ
Pulse energy @ 257 nm	~ 200 uJ *
Repetition rate	0 – 1 MHz
Average Power	20 W
M ²	<1.3
Pulse duration	190 fs – 10 ps

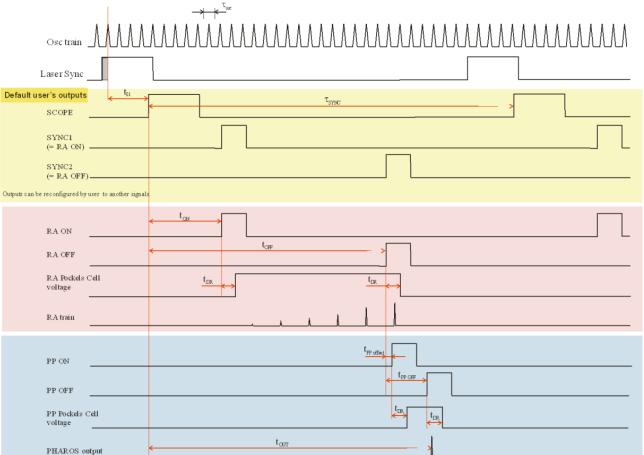
PHAROS


State Son A



Typical PHAROS far field beam profile at 200 kHz




Typical PHAROS near field beam profile at 200 kHz

^{*} Depending on pulse duration

Parameter		Min	Min	Max	Jitter	
Oscillator period	τ _{OSC}		13-14			ns
SYNC period	τ _{SYNC}	1-5*		1000	1 τ _{OSC}	μs
SCOPE to SYNC delay	τ _{S1}		6 τ _{OSC}		1 τ _{OSC}	ns
RA on delay	τ_{ON}	0		45		ns
RA off delay	τ _{OFF}	145		500	0.5 (typical)	ns
Cavity Dumping Time	τ _{CD}	145		500	0.5 (typical)	ns
HV driver delay	τ_{DR}		60			ns
Pulse picker offset	τ _{PP offset}	-30		30		ns
PP OFF delay to PP ON	τ _{PP OFF}				10	ns
SCOPE, SYNC1, SYNC2 delay to PHAROS output	тоит				0.5 (peak to peak at 10 ⁷ pulses)	ns
"Soft Start" time			5			s
Time between RA STOP and Run commands		3				S

Figure 9. Laser timing diagram with reference to optical pulses of OSC and RA

Example:

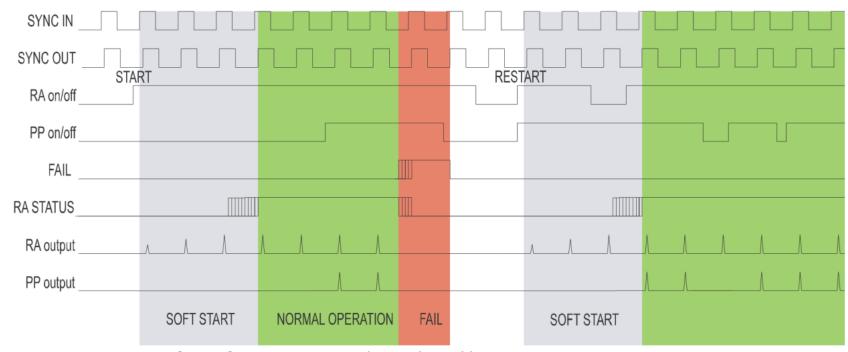
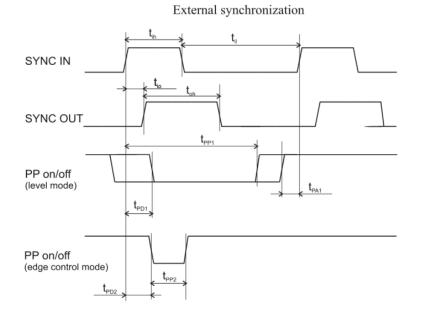
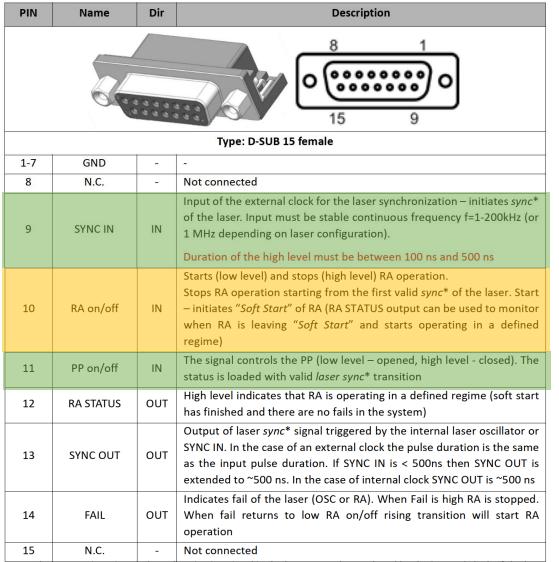




Figure 11. Waveforms for remote control signals and laser output

Parameter			Typical	Max				
Internal synchronization								
SYNC OUT high	τ _p		500		ns			
PP on/off signal delay	τ _{pr1}	0		130	ns			
PP on/off signal hold	τρρ	50		70	ns			
External synchronization								
SYNC IN high	τ _{ih}	100		500	ns			
SYNC IN period	τ _{il +} τ _{ih}	1-5*		1000	μs			
SYNC IN to SYNC OUT delay	τίο		100		ns			
SYNC OUT high	τ _{oh}	500		τ _{ih} if>500	ns			
PP on/off signal delay in level control mode	τ _{PD1}			150	ns			
PP on/off signal hold starting from SYNC IN in level control mode	τ _{PP1}	560			ns			
PP on/off signal delay in edge control mode	τ _{PD2}	50		100	ns			
PP on/off signal hold in edge control mode	τ _{PP2}	50		700	ns			

^{*}Laser sync is an internal synchronization signal in the laser. It can be produced by the internal clock of the laser or external SYNC IN signal.