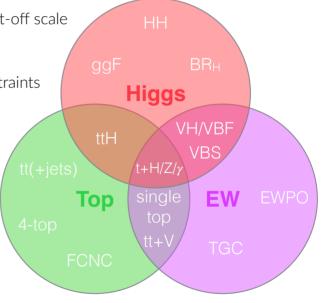
Recent EFT measurements from ATLAS and CMS

Jack C. MacDonald on behalf of the ATLAS and CMS collaborations

2nd General Meeting of the LHC EFT Working Group 3rd May 2021



Introduction

- So far no evidence of new physics (NP) from resonance searches
 - Search indirectly for NP using precision measurements of known processes
- Standard Model Effective Field Theory (SMEFT) can be used to parametrise deviations in terms of higher dimensional operators
 - Variety of possible bases, e.g. Warsaw, Higgs, HISZ, etc.
 - Higher order terms suppressed by increasing powers of cut-off scale
 - Reject B/L violating dim. 5 and dim. 7 operators
 - Lowest order is then dim. 6, but some analyses place constraints on dim. 8
- Measurements may be direct or use reparametrisation
 - Direct measurements fully take into account acceptance/efficiency effects, but implementation can be harder
- Focus today on recent* EWK, Higgs and Top measurements
 - Distinction sometimes arbitrary
 - Many processes affected by same operators

*since previous meeting (October 2020)

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i,d>4} \frac{c_i^{(d)}}{\Lambda^{d-4}} Q_i^{(d)}$$

K. Mimasu

Electroweak measurements

 $pp \rightarrow 4l$, Wy, WW, WZ, Vyy, Zyjj

Higgs measurements

 $H \rightarrow 4l, H \rightarrow \gamma\gamma$, Higgs combinations

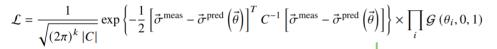
Top measurements

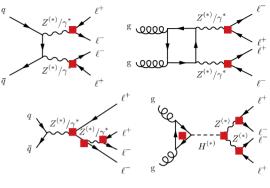
t(t) + leptons, $tt\gamma$

Electroweak measurements

 $pp \rightarrow 4l$, Wy, WW, WZ, Vyy, Zyjj

Higgs measurements

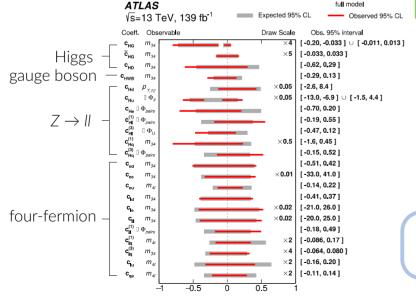

 $H \rightarrow 4l, H \rightarrow \gamma\gamma,$ Higgs combinations


Top measurements

t(t) + leptons, ttγ

• Multiple SM processes contribute to 4/ final state

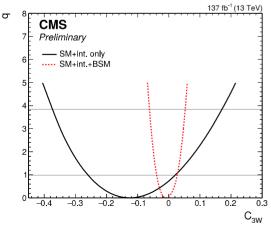
- m(4l) measured double-differentially in $p_T(4l)$ and |y(4l)|
- Additionally range of kinematic/angular variables measured in four m(4l) regions \rightarrow used to constrain EFT coefficients
- EFT limits set with likelihood function for unfolded distributions:


[arXiv:2103.01918]

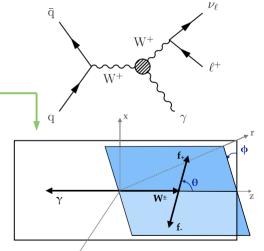
$$\vec{\sigma}^{\text{pred}} = \vec{\sigma}^{\text{SM}} \times \left(1 + c_i \cdot \vec{\sigma}^{\text{INT}} / \vec{\sigma}^{\text{LO SM}} + c_i^2 \cdot \vec{\sigma}^{\text{BSM}} / \vec{\sigma}^{\text{LO SM}}\right)$$

$$\theta_i = \text{BSM nuisance parameters}$$

139 fb⁻¹

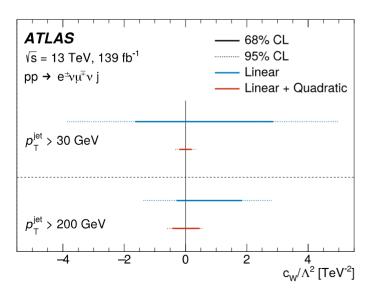

- 22 coefficients giving non-negligible contributions considered separately (setting others to zero)
 - Choose most sensitive observable to set limit (vs. m(4l))
- Linear and linear + quadratic fits performed

Quadratic terms have significant impact for many four-fermion operators – smaller impact on some other operators


- ► Interference term can be suppressed due to different helicity configurations of SM and BSM contributions [arXiv:1708.07823] [arXiv:1707.08060] e.g. $q\bar{q} \rightarrow V_{T_{\pm}}V_{T_{\mp}}$ (in the SM), $q\bar{q} \rightarrow V_{T_{\pm}}V_{T_{\pm}}$ (with O_{3W} insertion)
 - Leading contribution becomes quadratic term (higher dimension operators may also be important)
 - Choosing suitable variables or phase spaces can overcome helicity suppression \rightarrow e.g. azimuthal angles of decay products; allowing for jets in the final state
- O_{3W} affects triple gauge boson vertex \rightarrow interference term suppressed
- Sensitivity to linear term increased by measuring differentially in $p_T^{\gamma} \times |\varphi_f|$
 - Boost to $W\gamma$ rest frame and use azimuthal angle of f^+ fermion = φ_f

 Maximum likelihood fit performed with reparametrised cross-sections

$$\sigma_j^{\text{tot}} = \sigma_j^{\text{SM}} + C_{3W}\sigma_j^{\text{int}} + C_{3W}^2\sigma_j^{\text{BSM}}$$


 Tighter p_T['] and p_T^γ cuts than nominal selection, and jet veto

Sensitivity to linear term improved by factor of up to 10 with addition of angular variable, but quadratic term still dominant

• First jet-inclusive differential WW measurements at LHC

- Sensitivity to c_w via gauge boson self-couplings
 - Suppression of interference term in jet veto measurement
 - Lift suppression with hard jet \rightarrow impact of linear term expected to increase with jet p_{T} [arXiv:1707.08060]
- Reparametrise unfolded m_{\parallel} cross section with Wilson coefficient c_{3W}

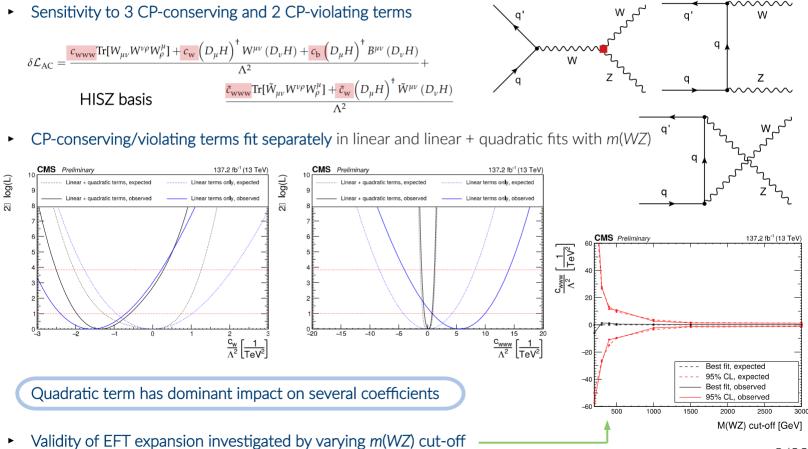
 Maximum likelihood fit performed in dedicated region with p_T lead.jet > 200 GeV

g 666

- Linear and linear + quadratic fits performed
 - Linear limits beat same limits from WW + 0 jet 36fb⁻¹ measurement [arXiv:1905.04242], but behind constraints from Z + dijets measurements [arXiv:2006.15458]

Quadratic term still dominant, but impact reduced at higher jet $p_{\rm T}$

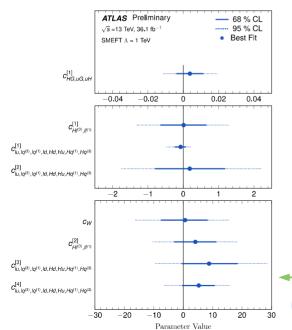
q


$WW + \ge 1$ jet \Re

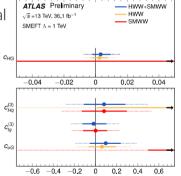
[arXiv:2103.10319]

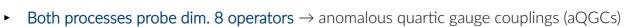

137 fb⁻¹ [SMP-20-014]

Fiducial and differential cross sections measured in trilepton final states



- ► Combination of WW + 0 jets and H(WW*) measurements [STDM-2017-24] [HIGG-2016-07]
 - Large number of dim. 6 operators affect both processes
 - WW is background for $H(WW^*) \rightarrow$ estimated in dedicated CR
 - → use WW SR in place of H(WW*) CR




► Use unfolded WW p_T^{lead.lep.} distribution (14 bins) and H(WW*) ggF + VBF signal strength modifiers in likelihood

- Linearised EFT model → reparametrise signal strength modifiers in terms of c_i
 - Modifications to $H \rightarrow e\mu\nu\nu$ BR also considered (including acceptance effects)
 - Common NPs treated as correlated in combined likelihood
- Search for sensitive directions
 - Group 20 CP-even operators according to physics impact \rightarrow reparametrise Hessian in c_i and find eigenvectors for each group
 - 8 sensitive directions (based on eigenvalues) \rightarrow fit simultaneously

Agreement with SM at level of 1σ (2σ for individual fits) or better

CMS

-0.52, 0.44

-0.65, 0.63

-1.36, 1.21

-0.45, 0.52

-1.02, 1.07

-1.67, 1.97

-0.36, 0.36

-0.72,0.72

-0.64, 0.57

-0.81,0.90

-1.68, 1.54

-0.58, 0.64

-1.30, 1.33

-2.15, 2.43

-0.47, 0.47

-0.91,0.91

Vγγ, Ζγjj

 F_{T0}/Λ^4

 F_{T1}/Λ^4

 F_{T2}/Λ^4

 F_{T5}/Λ^4

 F_{T6}/Λ^4

 F_{T7}/Λ^4

 F_{T8}/Λ^4

 F_{T9}/Λ^4

	-1 [CN4D 40	0101			$W\gamma\gamma$ (TeV ⁻⁴)		$Z\gamma\gamma($	TeV ⁻⁴)
Vγγ 137 ft	5 ⁻¹ [SMP-19	-013]		Parameter		Observed	Expected	Observed
				$f_{M,2}/\Lambda^4$	[-57.3, 57.1]	[-39.9, 39.5]	-	-
	cients using rep	parametrised d	etector	$f_{M,3}/\Lambda^4$	[-91.8, 92.6]	[-63.8, 65.0]	-	-
level p _τ ^{γγ}				$f_{T,0}/\Lambda^4$	[-1.86, 1.86]	[-1.30, 1.30]	[-4.86, 4.66]	[-5.70, 5.46]
				$f_{T,1}/\Lambda^4$	[-2.38, 2.38]	[-1.70, 1.66]	[-4.86, 4.66]	[-5.70, 5.46]
• aQGC enhanced at high p_{T}				$f_{T,2}/\Lambda^4$	[-5.16, 5.16]	[-3.64, 3.64]	[-9.72, 9.32]	[-11.4, 10.9]
× ×		0 1 1		$f_{T,5}/\Lambda^4$	[-0.76, 0.84]	[-0.52, 0.60]	[-2.44, 2.52]	[-2.92, 2.92]
			95% CL	$f_{T,6}/\Lambda^4$	[-0.92, 1.00]	[-0.60, 0.68]	[-3.24, 3.24]	[-3.80, 3.88]
 ··			/ 5/0 CL	$f_{T,7}/\Lambda^4$	[-1.64, 1.72]	[-1.16, 1.16]	[-6.68, 6.60]	[-7.88, 7.72]
Zγjj 137 ft	5⁻¹ [SMP-20)-016]		$f_{T,8}/\Lambda^4$	-	-	[-0.90, 0.94]	[-1.06, 1.10]
				$f_{T,9}/\Lambda^4$	-	-	[-1.54, 1.54]	[-1.82, 1.82]
Operator coefficients	Expected [TeV ⁻⁴]	Observed [TeV ⁻⁴]	Freeze all sys	st. [TeV ⁻⁴]	Unitarity bound [TeV]	u	d u
F_{M0}/Λ^4	-12.5 , 12.8	-15.8 , 16.0	-15.2 ,	15.4	1.1	_		
F_{M1}/Λ^4	-28.1 , 27.0	-35.0 , 34.7	-33.8 ,		1.2	W	$\sum Z/\gamma^*$	{
F_{M2}/Λ^4	-5.21 , 5.12	-6.55 , 6.49	-6.32,		1.4			WS
F_{M3}/Λ^4	-10.2 , 10.3	-13.0 , 13.0	-12.4 ,		1.6	W	2 mg	Zlat
F_{M4}/Λ^4	-10.2 , 10.2	-13.0 , 12.7	-12.5 ,		1.4			
F_{M5}/Λ^4	-17.6 , 16.8	-22.2 , 21.3	-21.4 ,		1.8	u u	d	d d
F_{M6}/Λ^4	-25.0 , 25.6	-31.7 , 32.0	-30.4 ,		1.1			
F_{M7}/Λ^4	-44.7 , 45.0	-56.6 , 55.9	-54.3 ,	53.8	1.3	► Fit 1	16 coefficie	nts using

-0.62, 0.55

-0.78, 0.77

-1.63, 1.48

-0.55,0.62

-1.25, 1.29

-2.06, 2.36

-0.46, 0.46

-0.88, 0.88

1.4

1.5

1.4

1.8

1.7

1.8

1.5

1.6

- Fit 16 coefficients using differential m_{Zy}
- Limits similar to Wγjj

Observations consistent with SM

Contents

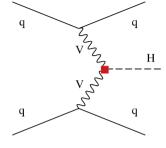
Electroweak measurements

 $pp \rightarrow 4l, W\gamma, WW, WZ, V\gamma\gamma, Z\gamma jj$

Higgs measurements

 $H \rightarrow 4l, H \rightarrow \gamma\gamma$, Higgs combinations

Top measurements


t(t) + leptons, ttγ

- Dedicated EFT measurement → full MC simulation of new physics, including acceptance and efficiency effects
- Study structure of HVV, Hgg and Htt interactions in SMEFT framework
 - ggH, VBF, VH, ttH, tH, bbH production all with $H \rightarrow VV \rightarrow 4l$ decay
 - Amplitudes parametrised with anomalous couplings \rightarrow later mapped to Higgs and Warsaw bases

$$e.g. \quad A(\mathrm{HV}_{1}\mathrm{V}_{2}) = \frac{1}{v} \left[a_{1}^{\mathrm{VV}} + \frac{\kappa_{1}^{\mathrm{VV}} q_{\mathrm{V1}}^{2} + \kappa_{2}^{\mathrm{VV}} q_{\mathrm{V2}}^{2}}{\left(\Lambda_{1}^{\mathrm{VV}}\right)^{2}} + \frac{\kappa_{3}^{\mathrm{VV}} (q_{\mathrm{V1}} + q_{\mathrm{V2}})^{2}}{\left(\Lambda_{Q}^{\mathrm{VV}}\right)^{2}} \right] m_{\mathrm{V1}}^{2} \epsilon_{\mathrm{V1}}^{*} \epsilon_{\mathrm{V2}}^{*} + \frac{1}{v} a_{2}^{\mathrm{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_{3}^{\mathrm{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu},$$

Production modes separated according to kinematic features of associated particles

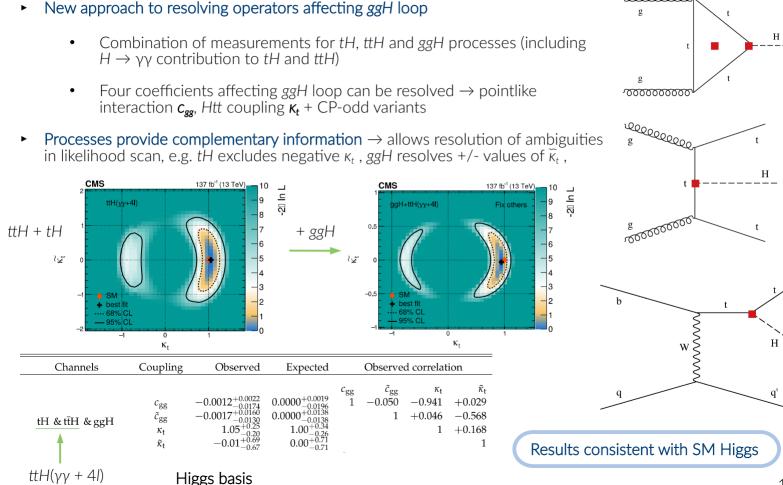
137 fb⁻¹

- -----
- Matrix element approach used to find optimum discriminating variables (sig/bkg and SM/BSM)

Channels	Coupling	Observed	Expected		Observed correlation		
				δc_z	C_{ZZ}	$C_{Z\square}$	\tilde{c}_{zz}
VBF & VH & H $\rightarrow 4\ell$	δc_z	$\substack{-0.03\substack{+0.06\\-0.25}\\0.01\substack{+0.11\\-0.10}$	$0.00\substack{+0.07\\-0.27}$	1	+0.241	-0.060	-0.009
	c_{zz}	$0.01^{+0.11}_{-0.10}$	$0.00^{+0.22}_{-0.16}$		1	-0.884	+0.058
	$C_{Z\square}$	$-0.02^{+0.04}_{-0.04}$	$0.00^{+0.06}_{-0.09}$			1	+0.020
	\tilde{c}_{zz}	$\substack{-0.02\substack{+0.04\\-0.04}\\-0.11\substack{+0.30\\-0.31}$	$\begin{array}{c} 0.00 \substack{+0.07 \\ -0.27 \\ 0.00 \substack{+0.22 \\ -0.16 \\ 0.00 \substack{+0.06 \\ -0.09 \\ 0.00 \substack{+0.63 \\ -0.63 \end{array}} \end{array}$				1

Higgs basis

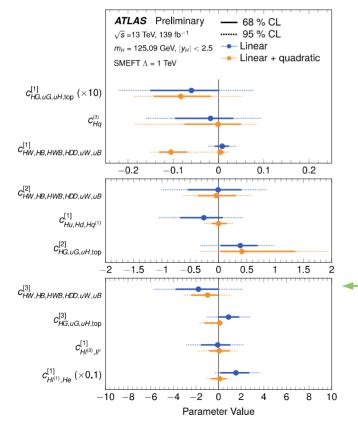
 Extended maximum likelihood fit using μ_i and fractional coupling contributions

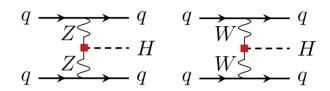

e.g.
$$f_{ai}^{VV} = \frac{|a_i^{VV}|^2 \alpha_{ii}^{(2e2\mu)}}{\sum_j |a_j^{VV}|^2 \alpha_{jj}^{(2e2\mu)}} \operatorname{sign}\left(\frac{a_i^{VV}}{a_1}\right)$$

• Use assumptions on Higgs width to get constraints on couplings

Results consistent with SM Higgs

137 fb⁻¹

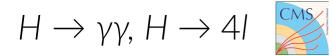

10000000000

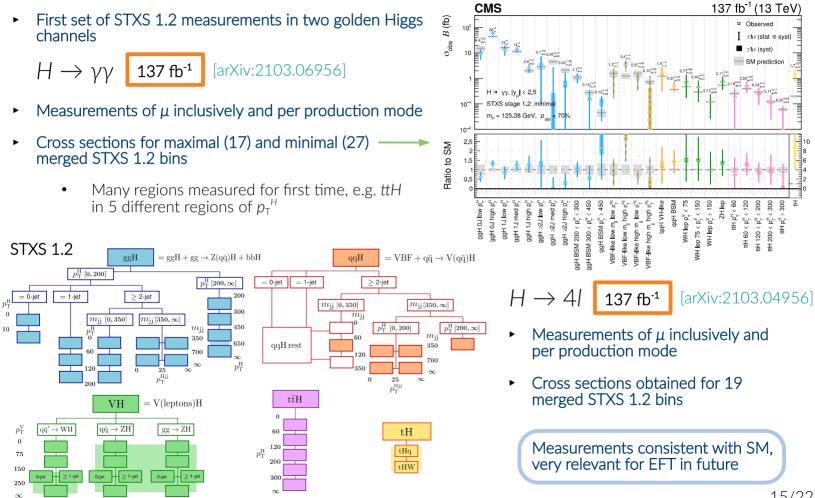


tH + ttH + ggH

Higgs combination

- Combine $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ \rightarrow 4I$ (all production modes) and $H \rightarrow b\overline{b}$ (VH) measurements
 - Separate measurements performed using STXS framework (STXS 1.1/1.2) \rightarrow combine measurements for processes in joint likelihood




139 fb⁻¹

- 32 Wilson coefficients in Warsaw basis with significant impact
 - Signal strength modifiers expressed with linear terms only or linear + quadratic terms
 - Find most sensitive directions with grouping of c_i by physics impact → eigenvectors and eigenvalues in each group
 - 10 sensitive directions used

Observations consistent with SM, and generally tighter constraints with quadratic model

H

Contents

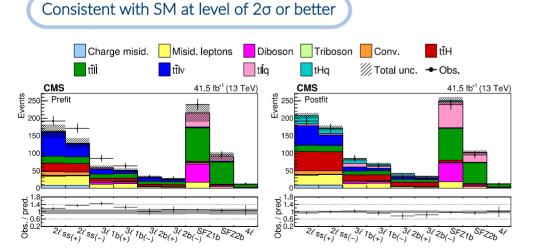
Electroweak measurements

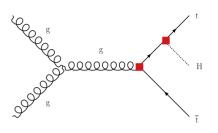
 $pp \rightarrow 4l, W\gamma, WW, WZ, V\gamma\gamma, Z\gamma jj$

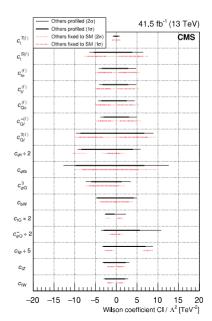
Higgs measurements

 $H \rightarrow 4l, H \rightarrow \gamma\gamma,$ Higgs combinations

Top measurements


t(t) + leptons, $tt\gamma$


t(t) + leptons



[arXiv:2012.04120]

- Dedicated EFT measurement \rightarrow fit performed on detector level
 - Five signal processes considered \rightarrow ttH, ttll, ttlv, tllq, tHq
- Events categorised based on leptons and (*b*-)jets \rightarrow 35 non-overlapping SRs
- ▶ 16 operators considered → chosen because of expected large impact on signal processes but not backgrounds
 - Parametrise signal event weights with c_i –
- Maximum likelihood fit performed across all SRs
 - Two fits performed: all c_i profiled; setting all but one c_i to zero

 $w_i\left(\frac{\vec{c}}{\Lambda^2}\right) = s_{0i} + \sum_i s_{1ij} \frac{c_j}{\Lambda^2} + \sum_i s_{2ij} \frac{c_j^2}{\Lambda^4} + \sum_{i,k} s_{3ijk} \frac{c_j}{\Lambda^2} \frac{c_k}{\Lambda^2},$

 41.5 fb^{-1}

cl_[(A/TeV)²]

0.6

0.4

0.2

0

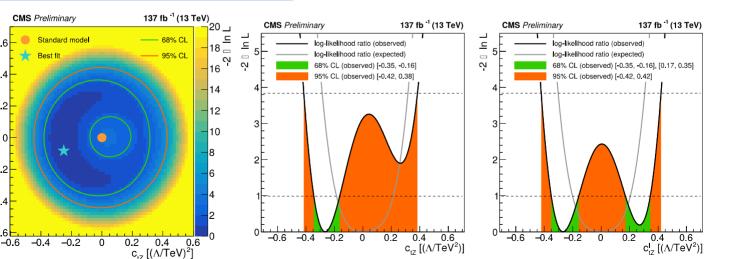
-0.2

-0.4

-0.6

95% CL interval

[-0.29, 0.32]


[-0.30, 0.31]

[-0.42, 0.38]

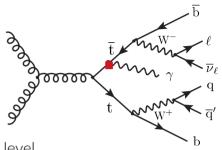
[-0.42, 0.42]

- Inclusive and differential cross section measurements in single lepton channel
- Anomalous top quark electroweak dipole moments affect $t\gamma$ vertex
 - Effects parametrised by Wilson coefficients c_{tz} and c_{tz} ٠
- Constrain coefficients using $p_{T}(\gamma)$ on detector level
 - Reweight SM samples using SMEFT/SM weights obtained on generator level
- Maximum likelihood fit performed \rightarrow best constraints to date

Data set

expected

observed


Wilson coefficient

 c_{tZ}

 c_{tZ}^{I}

 c_{tZ}

 C_{t7}^{I}

68% CL interval

[-0.19, 0.21]

[-0.20, 0.20]

[-0.35, -0.16]

[-0.35, -0.16], [0.17, 0.35]

Additional measurements

Many additional measurements potentially relevant for future EFT interpretations (listed here only full Run 2 measurements since October 2020)

Electroweak

Z + c-jets [arXiv:2012.04119] - April 2021

XATLAS $\gamma\gamma \rightarrow WW$ [arXiv:2010.04019] – October 2020

<u>Higgs</u>

VH(WW) [HIG-19-017] – March 2021

t(*t*)*H* [arXiv:2011.03652] – November 2020

XATLAS $H \rightarrow WW$ [ATLAS-CONF-2021-014] – March 2021 $H \rightarrow bb$ [ATLAS-CONF-2021-010] – March 2021 *ttH(bb)* [ATLAS-CONF-2020-058] – November 2020

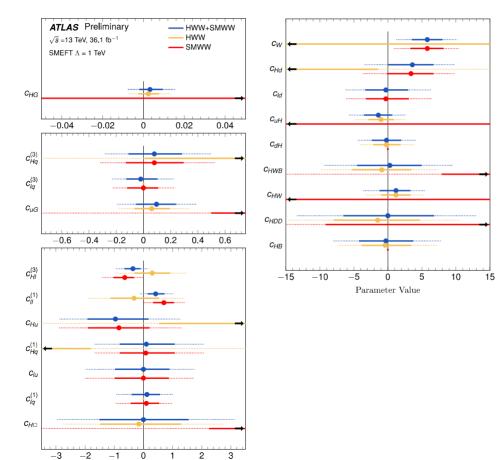
Top

 $t\bar{t}(lepton + jets)$ [TOP-20-001] – March 2021

ttZ [arXiv:2103.12603] – March 2021

tttt [ATLAS-CONF-2021-013] - March 2021

Summary


- Many interesting analyses relevant for EFT measurements (including many not shown today)
 - EWK, Top, Higgs measurements sensitive to wide range of EFT parameters (both dim. 6 and dim. 8)
 - Measurements specifically target EFT effects or reparametrise distributions
 - Some combinations in Higgs and EWK sector to improve sensitivity \rightarrow first steps towards global fits
- Limits on EFT coefficients improving, but no deviations from SM yet
 - Large impact of quadratic terms in some analyses potential issue, but new methods for improving sensitivity to linear terms investigated

Backup

► Full complementarity between WW and H(WW*) measurements

