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PRELIMINARY

A discussion of the advantages and disadvantages of different sets of electroweak input
parameters took place in a working-group meeting on December 7, 2020 (see also the review
on NLO predictions at the December 14 meeting).

Adopting a common set of electroweak parameters for tools making SMEFT predictions
for LHC observables would ease comparisons and combinations, even though results ob-
tained with one set can in principle be translated to another. For the sake of comparison,
implementing different choices in tools would still be desirable.

1 General considerations
When performing a SMEFT fit to a set of observables, the theoretical expression of these
observables is given in terms of SM input parameters andWilson coefficients for the relevant
higher-dimensional operators. In principle, the input parameters and Wilson coefficients
could be fitted to the data simultaneously, and thus they could be treated on equal footing
in the fitting process. However, the practical implementation and performance is improved
by extracting input parameters from observables that meet special criteria:

1. The “input observables” are measured very precisely (such that their experimental
uncertainty is subdominant or even negligible in a SMEFT fit).

2. The extraction of the input parameters from these observables is (to first approxima-
tion) independent of any SMEFT effects, but only depends on effects like QED/QCD
corrections, hadronization and backgrounds, that can be evaluated reliably within the
SM.

3. When using these input parameters in a SMEFT fit to another set of observables,
they do not introduce any dependence on additional unrelated SMEFT operators.
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If these criteria are met, the SM input parameters can be determined independently from
the actual SMEFT fit, and they can be kept constant during event generation.

The input parameters can be divided into two categories:

• On-shell masses that are determined from kinematical features (resonance peaks,
thresholds, kinematic endpoints).1 New physics effects are negligible if the kinemat-
ical features are sufficiently sharp.

• Gauge couplings:

a) The electromagnetic coupling α is very precisely determined from very low en-
ergy processes [3, 4], where new physics effects decouple and are additionally
constrained by QED gauge invariance. For electroweak processes one also needs
the running coupling α(mZ) = α(0)(1−∆α)−1 [5–7], but any new physics effects
in ∆α are also constrained by QED gauge invariance.
For processes involving external on-shell photons, mixed schemes involving also
α(0) are advisable (see e.g. sec. 5 of ref. [8]).

b) The QCD coupling αs can be determined from many different observables, but
the most precise determinations are based on the QCD static potential and
lattice QCD (see section on “Quantum Chromodynamics” in [9]), and thus they
are protected from new physics by QCD gauge invariance.

c) The Fermi constant Gµ can be extracted from the muon lifetime [10]), which
depends on QED corrections and possibly also on new physics at scales Λ > mµ.

There is a redundancy in the SM among the parameters α,Gµ,mW ,mZ , and thus only
three of these should be chosen as input parameters. The three most common choices for
these three parameters are discussed in the following sections.

2 {α,Gµ,mZ}
This choice is commonly used in electroweak precision studies, since these three parameters
are most precisely known among the set of observables considered there. However, mW

must then be computed using the relation
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Here the contributions of dimension-six operators in the HISZ basis [11] have been included.
This implies that the W mass receives SMEFT corrections that, as a consequence, will

1A counterexample would be the determination of the top mass from the total pp→ tt̄ cross-section at
LHC [1, 2], which would be affected by new physics entering via qqtt or ttg(g) operators.

2



enter many LHC observables. Since mW appears in the propagators and phase-space
boundaries, the dependence on these Wilson coefficients will be highly non-linear, which
can be impractical for SMEFT fits. A possible way out is to re-expand the dependence
on the Wilson coefficients to linear order. However, even under the assumption that the
latter are sufficiently small to allow expansion, this is difficult to achieve in Monte Carlo
programs and may also pose theoretical issues.

3 {Gµ,mZ,mW}
Presently, the developers of SMEFT tools for LHC predictions tend to favour the {Gµ,
mZ , mW} set.

As it includes both electroweak gauge boson masses, it has the advantage of reducing
SMEFT dependencies in propagators. (Accounting for the SMEFT dependence of the total
widths is an issue to be discussed elsewhere.) Mass measurements resting on kinematical
features also have clear, model independent, interpretations.

However, Gµ in the SMEFT is modified by higher-dimensional operators. There are
a few of these at leading order (with the precise number depending on the basis choice),
including the four-fermion operator O(3)`

LL , and many more at higher orders. Thus the de-
pendence on these operators must always be taken into account, even for sets of observables
that are entirely unrelated to leptonic physics.

As measurements of mW are actively pursued, predictions including it as an input may
need to be recomputed for applications in which small shifts would matter.

4 {α,mZ,mW}
Using α as input instead of Gµ has the advantage of avoiding the shifts in electroweak
couplings that arise from operator coefficients affecting the muon decay (such as O(3)`

LL ) [12].
It was argued at the Dec. 14 meeting that the α scheme leads to slightly worse elec-

troweak convergences in processes involving g2 = e/ sin θw or the Higgs vacuum expectation
value, both in the SM and in SMEFT. Using Gµ as an input instead of α indeed absorbs
m2
t/m

2
W corrections from the ρ parameter into the lower-order result (see e.g. sec. 5 of

ref. [8]). When NLO EW corrections are included in the SM, results obtained in the two
schemes are however very close to each other. Differences with respect to the {Gµ,mZ ,mW}
scheme could be incorporated by resuming contributions from the running of α and includ-
ing higher-order contributions to the ρ parameter from the standard model.

5 Conversion and combinations
Irrespective of the electroweak input set they rely on, electroweak and global fits should
include the precise measurements of the other parameters as constraints. This means that
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measurements of mW , α, or Gµ need to be included as constraints in fits that employ
{α,Gµ,mZ}, {Gµ,mZ ,mW}, or {α,mZ ,mW} as inputs.

If mW is selected as an input quantity for LHC measurements, a potential issue arises
when addressing the combination of LHC and LEP results, as precision calculations of elec-
troweak observables favoured the {α,Gµ,mZ} set. For consistency and up to the desired
precision, these would need to be converted. In fact, this conversion is relatively straight-
forward since many electroweak precision fitters already use mW as an internal parameter.
Conversions between schemes that involve both mZ and mW are also simplified by the fact
the coupling dependence is polynomial.

It should be noted that, in principle, the conversion between input schemes concerns
two different aspects:

(i) the predicted value of a given observable in the SM is modified. Numerically, this
scheme dependence decreases as higher-order perturbative corrections are included.

(ii) the dependence on the Wilson coefficients changes.

Typically, effects due to (i) have a much smaller impact on global fits compared to those
from (ii), especially if the observables involved are computed with high accuracy in the
SM.

The conversion (ii) can be reduced to a simple a Jacobian transformation [13, 14]. Let
us consider the translation from the I = {I1, . . . In} input set to the I ′ = {I ′1, . . . I ′n} one.
Predictions for the I observables are first obtained in the I ′ scheme,

ISM(I ′) + δI(I ′) +O(C2/Λ4) , (3)

separating SM contributions and linearised dimension-six SMEFT corrections. Denoting
OSM+δO andO′SM+δO′ the linearised SMEFT predictions for any observable, respectively
in the I and I ′ schemes, the translation is achieved by:

δO′(I ′) = δO(ISM(I ′)) + ∂OSM

∂I
(ISM(I ′)) δI(I ′) . (4)

Note that the change in δO due to the shift from the original inputs I to ISM(I ′) is
generally expected to be subleading. When it is neglected, only the functional dependence
of OSM on I is required for the translation, and not that of δO.

Alternatively, one can just re-compute the process of interest using a tool set up with
a different set of input parameters. Both methods have advantages and disadvantages.
Ultimately, which of the two is preferable depends on the process and desired level of
approximation. Some aspects to consider are:

• The main complication in applying the Jacobian method is that calculating ∂OSM/∂I
requires (semi-)analytic knowledge of the dependence of the SM prediction on the
input quantities (at the perturbative order chosen for the SMEFT calculation). For
differential predictions at the LHC, extracting such a semi-analytical dependence
could require a fit of the SM prediction sampled over input parameter values.
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• The conversion to quadratic order in dimension-six operator coefficients has an extra
complication in the Jacobian method, because it would also require knowledge about
the dependence on the input parameters of the linear SMEFT contributions, δO. It
is also needed to account for the dependence of δO itself on the input scheme.

• The Jacobian method is convenient for estimating the leading dependence on the
Wilson coefficients that directly modify the input quantities, which are typically
only a few. On the other hand, a direct re-calculation is very easy for input schemes
that are already implemented in existing tools.

The conversion (i) also requires (semi-)analytical knowledge of the functional depen-
dence of the SM prediction on the inputs:

O′SM(I ′) = OSM(I(I ′)) . (5)

For instance in ref. [13] the SM predictions for EWPD were converted from {α,Gµ,mZ} to
{Gµ,mZ ,mW} scheme employing the semi-analytic formulae provided in ref. [15] (Eq. (28)
and Table 5) and replacing ∆α by the expression of ∆α(mW ) obtained solving Eqs. (6), (7)
in ref. [16]. Because this calculation included higher-order corrections in QCD and QED,
the scheme dependence turned out to be numerically very small (< 1‰).
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