Area 3: Experimental measurements and observables

Eleni Vryonidou

on behalf of Florencia Canelli, Nu Gritsan

EFT WG General Meeting 3/5/21

on behalf of Florencia Canelli, Nuno Castro, Pietro Govoni, Andrei

Experimental measurements and observables From Outline of WG activities

3. Experimental measurements and observables

How observables relate to operators, which measurements are important for a given operator or set of operators, differential/fiducial measurements vs. dedicated ones, identification of optimal observables, machine learning, re-interpretation vs. static, presentation of results: covariance, multi-D likelihood, etc., compatibility with global fits (i.e. assumptions used in deriving measurement and reporting results).

- - operators
 - 0 observables, etc.
 - 0
 - effects, non-interferences, and other TH knowledge
 - Expected uncertainties: sys. or stat. dominated
- and their possible reinterpretation (***)
 - Dedicated EFT extractions by collaborations
 - 0 re-interpretation.
 - 0 likelihood, etc...
 - 0
 - reweighting, etc.

Study observable, channel, process sensitivities and complementarities (***) Experimental targets: survey of the sensitive channels and corresponding

Differential distributions, optimal observables, including machine learning, and dedicated EFT measurements, spin density matrices, EFT-optimized fiducial regions, amplitude analyses, angular distributions (e.g. for CP), pseudo

Agreement across experiments (for fiducial regions in particular)

• What observables are most sensitive to new physics? Exploit energy growing

• Analysis strategies & experimental outputs, also with a view at legacy measurements

Differential measurements and the best choice of observables for

Presentation of measurements: cross sections, correlations/covariance, multi-D

Experimental systematics related to EFT (e.g. accounting for detector effects) Detector effects: unfolding, forward folding, efficiency maps, recasting through

EFT in backgrounds: final-state driven instead of sig-bgd, statistical model (***)

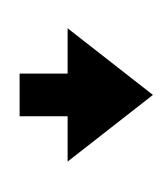
Kickoff Meeting 11 January

📰 Monday Andrei (meeting: experimental measurements and observables 11 Jan 2021, 14:00 → 18:00 Europe/Zurich Gritsan (Johns Hopkins University (US)), Eleni Vryonidou, Florencia Canelli (Universitaet Zuerich (CH)), astro (LIP and University of Minho (PT)), Pietro Govoni (Universita & INFN, Milano-Bicocca (IT))	2-
Descript	ion The agenda of this meeting is under construction. The meeting will be held online via zoom.	
Videoconferer Roo	Area 3 meeting: experimental measurements and observables	► Join ► ❤
2222-2-11		
There are	e minutes attached to this event. Show them.	
	Introduction: setting goals for the meeting Speakers: Florencia Canelli (Universitaet Zuerich (CH)), Nuno Castro (LIP and University of Minho (PT))	𝕲10m 🖉 ▾
	Introduction: setting goals for the meeting Speakers: Florencia Canelli (Universitaet Zuerich (CH)), Nuno Castro (LIP and University of Minho (PT)) LHCEFTWG-Area3-i	 ③ 10m ✓ • ○ 25m

https://indico.cern.ch/event/971725/

15:10 → 15:30	MELA: matrix element inspired approach for EFT measurements	© 20m 🖉 🗸
	Speaker: Ulascan Sarica (Univ. of California Santa Barbara (US))	
	∠ 20210111.pdf sarica-area3-LHCW	
15:35 → 15:55	MadMiner: Machine learning-based inference for particle physics	🕲 20m 🖉 👻
	Speaker: Kyle Stuart Cranmer (New York University (US))	
	cranmer-area3-LHC EFT-2020.pdf	
16:00 → 16:20	Break	©20m 🖉 ▾
16:20 → 16:45	Fitting EFT models with experimental measurements in the Top Physics	© 25m 🖉 -
	Speaker: Cen Zhang (Institute of High Energy Physics, Chinese Academy Sciences)	
	Lalk.pdf area3-LHCE	
16:50 → 17:15	Fitting EFT models with experimental measurements in the Higgs and EW Physics	© 25m 🖉 🗸
	Speaker: Tiann Tevong You (Imperial College Sci., Tech. & Med. (GB))	
	▶ Higgs and Electrow vou-area3-LHCEFT	
17:20 → 17:40	Summary of questions from experiment to theory and theory to experiment	320m 🖉 🗸 🗸
	Speakers: Andrei Gritsan (Johns Hopkins University (US)), Eleni Vryonidou	
	summary-area3-LH 🔀 talk_EFTArea3.pdf	
17:40 → 18:00	Discussion	© 20m 🖉 🗸
	Speaker: All	

See also Area 3+4 joint meeting https://indico.cern.ch/event/1007581/


Topics addressed

Different approaches for EFT interpretations of experimental measurements

- Inclusive, fiducial, differential measurements
- Dedicated EFT measurements
- Matrix Element Method
- Machine learning

Input from theory global fits

- Higgs+EW
- Top

Observables used in global fits and corresponding operators

Write up

LHC EFT WG Report in Area 3: Experimental Measurements and Observables

Editors: Florencia Canelli^{1,b}, Nuno Castro^{2,c}, Pietro Govoni^{3,d}, Andrei Gritsan^{4,e}, Eleni Vryonidou^{5, f}, many others...

¹ University of Zuerich, ² LIP and University of Minho, ³ University & INFN, Milano-Bicocca, ⁴ Johns Hopkins University, Baltimore, MD, USA ⁵ University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

Contents

1	Introduction	3
2	Survey of the sensitive channels and corresponding operators	4
3	Survey of experimental observables and corresponding measurements3.1Experimental observables3.2Optimized observables3.3Experimental measurements	5 5 6 6
A	cknowledgements	7

Chapter 2

Survey of the sensitive channels and corresponding operators

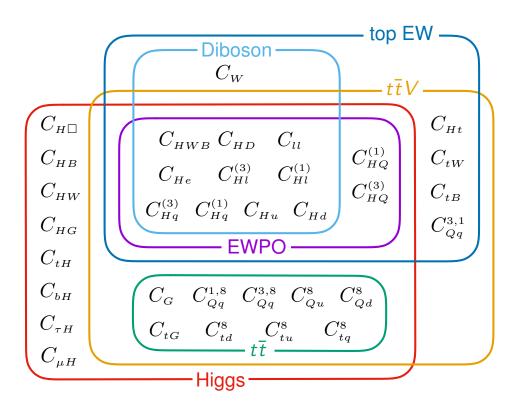
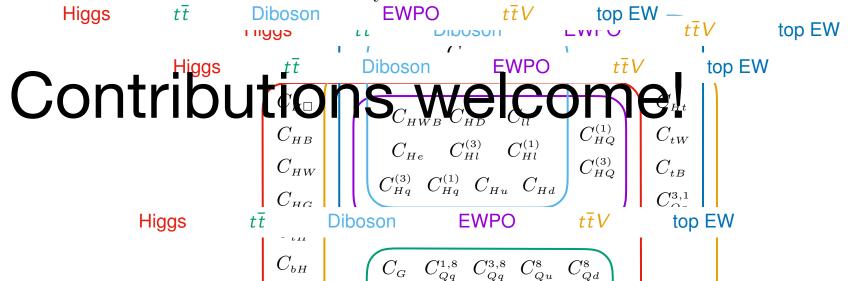



Figure 2.1: Schematic representation of the datasets and their overlapping dependences on the 34 Wilson coefficients included in the analysis of Ref. [1]

Future Plans

More work on the write-up

- establish a detailed map between EFT operators and experimental observables
- determine relative sensitivity of observables to operators
- performing experimental measurements & interpretations: pros and cons of various analyses techniques

Input welcome from both theory and experiment