Future Circular Colliders – Possibilities for Plasmas, Lasers, Dielectric Structures and CrystalsGenev

Frank Zimmermann, CERN

EASITrain

ARIES

WARNING - this talk does not necessarily reflect the view of CERN or FCC study management ! The Roy Aleksan, Ralph Assmann, Michael Benedikt, Iryna Chaikovska, dda Gschwendtner, Michael Hofer, Thibaut Lefèvre, Nikolai Muchnoi, Anke-Susanne Müller et al.

http://cern.ch/fcc

Furopean Union funding for Research & Innovation

Image: Polar Media/ FCC Study Office

The FCC integrated program FUTURE CIRCULAR COLLIDER inspired by successful LEP – LHC programs at CERN Innovation Study

- comprehensive long-term program maximizing physics opportunities
- stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options
- complementary physics
- common civil engineering and technical infrastructures
- building on and reusing CERN's existing infrastructure
- FCC integrated project allows seamless continuation of HEP after HL-LHC

Cene

. .

LHC

FCC Possibilities Frank Zimmermann Expert Panel, 30 March 2021

similar proposal in China: CEPC / SppC

FCC Possibilities Frank Zimmermann Expert Panel, 30 March 2021

The FCC integrated program projected baseline performance

e⁺e⁻ Higgs/electroweak Factory – energy efficiency

energy efficiency frontier hadron collider

both colliders breaking new grounds in luminosity and energy

feasibility study 2020-2025 as requested by ESPPU 2020

FCC-ee injector

FUTURE

plasma collimation

FCC Possibilities Frank Zimmermann Expert Panel, 30 March 2021

S. Heifets, T. Raubenheimer, 1996

FCC-ee collider rings

FCC-ee yy option

FUTURE

CIRCULAR COLLIDER Innovation Study

Innovation Study

FUTURE CIRCULAR COLLIDER FCC-hh – Gamma Factory option

partially stripped heavy-ion (PSI) beam in FCC-hh: high-stability laser-light-frequency converter

arXiv:1511.07794 proposed applications: intense source of e⁺ $(10^{16}-10^{17}/s)$, π , μ etc. doppler laser cooling of high-energy beams FCC w. laser-cooled isocalar ion beams

Novel technology: Resonant scattering of laser photons on ultra-relativistic atomic beam

FCC Possibilities Frank Zimmermann Expert Panel, 30 March 2021

options: plasma target, plasma acceleration of secondary beams?

CIRCULAR FCC-eh – lepton-hadron & yy collider

	symbol	SAPPHIRE	FCC-ee
average el. power	P	100 MW	100 MW
beam energy	E	80 GeV	85 GeV
b. polarization	P_e	0.80	0.80
bunch popul.	N_b	10 ¹⁰	7.7×10^{10}
laser rep rate	f_{rep}	200 kHz	3 kHz
av. collision rate	f_{coll}	200 kHz	2 kHz
laser pulse energy		5 J	5 J
laser power		1000 kW	15 kW
laser wave length	λ	350 nm	350 nm
Rayleigh length	Z_R	0.3 mm	0.3 mm
rms laser spot CP	$\sigma_{v:x,v}$	4 µm	4 µm
laser pulse length	σ_{λ}	0.25 mm	0.15 mm
# bunches / beam	n_b	-	4000
collider period		-	2 s
bunch length	σ_{z}	30 µm	350 µm

E damping time	$ \tau_{\rm E} $	-	67 ms
energy spread	σ_{δ}	?	7×10-4
RF frequency	f _{rf}	800 MHz	800 MHz
RF voltage	V _{rf}	2×10 GV	6 GV
γγ crossing angle	θ_{c}	$\geq 20 \text{ mrad}$	$\geq 20 \text{ mrad}$
nor.hor./vert. emit	$\gamma \epsilon_{\rm x,v}$	5, 0.5 μm	69, 0.06 μm
geom. h./v. emit.	ε _{x,v}	32, 3 pm	440, 0.4 pm
hor. IP beta funct.	β_{x}^{*}	5 mm	1 mm
vert. IP beta funct.	β_{v}^{*}	0.1 mm	0.1 mm
hor. rms spot size	σ_{x}^{*}	400 nm	700 nm
vert. rms spot size	σ_v^*	18 nm	6 nm
hor. rms CP spot	σ_x^{CP}	410 nm	1000 nm
vert. rms CP spot	σ_{v}^{CP}	180 nm	60 nm
distance IP – CP		~1 mm	1 mm
<i>e⁻e⁻</i> geometric	L_{ee}	2.2×10^{34}	1.3×10^{34}
luminosity		$cm^{-2}s^{-1}$	cm ⁻² s ⁻¹
$\gamma\gamma$ luminosity	$L_{\gamma\gamma}$	6×10 ³²	8×10 ³²
>125 GeV		$cm^{-2}s^{-1}$	cm ⁻² s ⁻¹

Innovation Study

14 TeV μ collider LHC- $\mu\mu$ with FCC-ee μ^{\pm} production

FCC Possibilities Frank Zimmermann Expert Panel, 30 March 2021

100 TeV μ collider based on FCC-ee & hh

100 TeV μ collider FCC- $\mu\mu$ with FCC-hh PSI μ^{\pm} production

options: plasma acceleration (e⁻ and e⁺!), or dielectric or laser acceleration; plasma lenses

FCC Possibilities Frank Zimmermann Expert Panel, 30 March 2021

IOP J. Phys.: Conf. Ser. 1067 022017

100 TeV μ collider FCC- $\mu\mu$ with FCC-hh PSI e⁺ & FCC-ee μ^{\pm} production

the ultimate challenge

synchrotron radiation (SR)

- FCC-ee: 100 MW SR power
- FCC-hh: 5 MW SR power at cold \rightarrow 100 MW cryo power

can we use crystals or plasma to shield and to suppress the photon emission ?

- FCC baseline is conservative and can be built based on existing technologies
- however, the FCC collider complex offers enormous wealth of opportunities for applying advanced acceleration concepts to achieve better performance and/or greatly reduce cost
- dedicated studies are needed CEPC is pursing these...
- "Make a small effort soon to investigate possibilities" (John Seeman, 2017)

we are counting on your help !

FCC Possibilities Frank Zimmermann

expert Panel, 30 March 2021

a pity that today's expert panelists cannot share a meal in the "expert restaurant"

thank you!

spare slides

FCC CDR & Study Documentation

FUTURE CIRCULAR

- **FCC-Conceptual Design Reports:**
 - Vol 1 Physics, Vol 2 FCC-ee, Vol 3 FCC-hh, Vol 4 HE-LHC
 - CDRs published in European Physical Journal C (Vol 1) and ST (Vol 2 – 4) [Springer]

EPJC 79, 6 (2019) 474 , EPJ ST 228, 2 (2019) 261-623 ,

EPJ ST 228, 4 (2019) 755-1107 , EPJ ST 228, 5 (2019) 1109-1382

EPJ is a merger and continuation of *Acta Physica Hungarica, Anales de Fisica, Czechoslovak Journal of Physics, Fizika A, II Nuovo Cimento, Journal de Physique, Portugaliae Physica* and **Zeitschrift für Physik**. 25 European Physical Societies are represented in EPJ, including the DPG.

- Summary documents provided to EPPSU SG
 - FCC-integral, FCC-ee, FCC-hh, HE-LHC
 - Accessible on http://fcc-cdr.web.cern.ch/

H2020 DS FCC Innovation Study 2020-24

FUTURE

FCC Possibilitie Design optimisation, construction planning, environmental impact assessment, management of excavation materials, user community building and public engagement, socio-economic impact,...

FCC-ee CDR baseline parameters

parameter	Z	WW	ZH	tī	LEP2
energy/beam [GeV]	45.6	80	120	182.5	105
bunches/beam	16640	2000	328	48	4
beam current [mA]	1390	147	29	5.4	3
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	230	28	8.5	1.6	0.0012
energy loss/turn [GeV]	0.036	0.34	1.72	9.2	3.34
synchrotron power [MW]	100			22	
RF voltage [GV]	0.1	0.75	2.0	4.0 + 6.9	3.5
rms bunch length (SR,+BS) [mm]	3.5, 12	3.0, 6.0	3.2, 5.3	2.0, 2.5	12, 12
rms emittance $\epsilon_{x,y}$ [nm, pm]	0.27, 1	0.84, 1.7	0.63, 1.3	1.5, 2.9	22, 250
longit. damping time [turns]	1273	236	70	20	31
crossing angle [mrad]	30			0	
beam lifetime [min]	68	59	12	12	434

FCC-hh (pp) collider parameters

parameter	FCC-hh		HL-LHC	LHC
collision energy cms [TeV]	100		14	14
dipole field [T]	16		8.33	8.33
circumference [km]	97.75		26.7	26.7
beam current [A]	0.5		1.1	0.58
bunch intensity [10 ¹¹]	1	1	2.2	1.15
bunch spacing [ns]	25	25	25	25
synchr. rad. power / ring [kW]	2400		7.3	3.6
SR power / length [W/m/ap.]	28.4		0.33	0.17
long. emit. damping time [h]	0.54		12.9	12.9
beta* [m]	1.1	0.3	0.15 (min.)	0.55
normalized emittance [mm]	2.2		2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	5 (lev.)	1
events/bunch crossing	170	1000	132	27
stored energy/beam [GJ]	8.4		0.7	0.36