Beam-Driven Plasma Wakefied Accelerators STATUS AND NEXT STEPS

Jens Osterhoff

Plasma Accelerator R&D

DESY. Accelerator Division

Our customers: high-energy physics and photon science

(FELs have similar demands for brightness)

> Energy efficiency motivates use of beam-driven plasma acceleration.

 $\eta = \eta_{wall \to DB} \times \eta_{DB \to WB}$

High efficiency, high-average power beam-driver technology exists today.

Critical: develop a self-consistent plasma-accelerator stage with high-efficiency, high-quality, and high-average-power

High efficiency

Transfer efficiency Driver depletion

High beam quality

Energy-spread preservation Emittance preservation

High average power

High repetition rate

Photon science applications naturally lie on the path to a collider **Ballpark requirements illustrate complexity of the task**

	FEL	Collider
Charge per bunch (nC)	0.01 - 0.1	0.1 - 1
Energy gain (GeV)	0.1 - 10	1000
Energy spread (%)	0.1	0.1
Wall-plug efficiency (%)	< 0.1 - 10	10
Emittance (µm)	0.1 - 1	0.01
Rep. rate (Hz)	10 ¹ - 10 ⁶	10 ⁴ - 10 ⁵
Avg. beam power (W)	10 ¹ - 10 ⁶	10 ⁶
Continuous run	24/1 - 24/7	24/365
Parameter stability	0.1%	0.1%

Transfer efficiency Driver depletion

Critical: develop a self-consistent plasma-accelerator stage

with high-efficiency, high-quality, and high-average-power

Energy-spread preservation Emittance preservation

- FEL (~10 GeV) single such stage sufficient
- **Collider (~1 TeV)** a great many of those needed in series with stricter beam quality requirements (also for positrons)

FLASHFORWARD

Energy gain per stage and bunch charge fulfill FEL requirements

Ballpark requirements and state-of-the-art

	FEL	Collider	Current
Charge per bunch (nC)	0.01 - 0.1	0.1 - 1	0.01 - 0.1
Energy gain (GeV)	0.1 - 10	1000	0.1 - 10

1.6 GeV energy gain of 74 pC charge with 4.4 GV/m

Source: M. Litos *et al.*, Nature **515**, 92 (2014)

Controlling energy spread and efficiency is a coupled challenge

Ballpark requirements and state-of-the-art

	FEL	Collider	Current
Charge per bunch (nC)	0.01 - 0.1	0.1 - 1	0.01 - 0.1
Energy gain (GeV)	0.1 - 10	1000	0.1 - 10
Energy spread (%)	0.1	0.1	l tightly
Wall-plug efficiency (%)	< 0.1 - 10	10	Sugnuy

coupled

beam

> Problem 1: Compared to RF cavities (Q ~ 104–1010), the electric fields in a plasma decay very rapidly ($Q \sim 1-10$).

> The energy needs to be extracted very rapidly -ideally within the first oscillation.

Image source: M. F. Gilljohann *et al.*, Phys. Rev. X9, 011046 (2019)

a celeration

> Problem 1: Compared to RF cavities (Q ~ 10^4 – 10^{10}), the electric fields in a plasma decay very rapidly ($Q \sim 1-10$).

> The energy needs to be extracted very rapidly -ideally within the first oscillation.

> Solution: Beam loading The trailing-bunch wakefield "destructively interferes" with the driver wakefield – extracting energy.

> Problem 2: to extract a large fraction of the energy, the beam will cover a large range of phases (~90 degrees or more).

> Large energy spread is induced (with non-monotonic correlation)

Image credit: M. Litos *et al.*, Nature **515**, 92 (2014)

> Problem 1: Compared to RF cavities (Q ~ 10^4 – 10^{10}), the electric fields in a plasma decay very rapidly ($Q \sim 1-10$).

> The energy needs to be extracted very rapidly -ideally within the first oscillation.

> Solution: Beam loading The trailing-bunch wakefield "destructively interferes" with the driver wakefield – extracting energy.

> Problem 2: to extract a large fraction of the energy, the beam will cover a large range of phases (~90 degrees or more).

> Large energy spread is induced (with non-monotonic correlation)

> Solution: Optimal beam loading The current profile of the trailing bunch is *precisely tailored* to exactly flatten the wakefield.

> This requires <u>extremely precise control</u> of the current profile.

> Current accelerators can provide this precision.

Image credit: M. Tzoufras *et al.*, Phys. Rev. Lett. **101**, 145002 (2008)

Per-cent-level field flattening

Image credit: C.A. Lindstrøm et al., Phys. Rev. Lett. 126, 014801 (2021) Technique: S. Schröder et al., Nature Communications 11, 5984 (2020)

Image credit: M. Tzoufras *et al.*, Phys. Rev. Lett. **101**, 145002 (2008)

Per-cent-level field flattening

Image credit: C.A. Lindstrøm et al., Phys. Rev. Lett. 126, 014801 (2021) Technique: S. Schröder et al., Nature Communications 11, 5984 (2020)

Conservation of energy spread 0 2%) Full charge coupling (~100% of 100 pC) Transfer efficiency 42±4% with 0.2% energy spread up to 70% when allowing energy spread increase

High beam-to-beam efficiency requires driver energy depletion

Ballpark requirements and state-of-the-art

	FEL	Collider	Current
Charge per bunch (nC)	0.01 - 0.1	0.1 - 1	0.01 - 0.1
Energy gain (GeV)	0.1 - 10	1000	0.1 - 10
Energy spread (%)	0.1	0.1	0.1
Wall-plug efficiency (%)	< 0.1 - 10	10	< 0.1

Next step to increase beam-to-beam efficiency \rightarrow combine with driver depletion

> Wall-plug to drive-beam efficiency challenge shared with ILC / CLIC

C.A. Lindstrøm et al., Phys. Rev. Lett. 126, 014801 (2021) R. Pompili et al., Nature Physics (2021)

Wake-to-beam efficiency demonstrated: 40 - 70%

Beam-to-beam efficiency demonstrated: 5% at FLASHForward, 7% at FACET

Sources: M. Litos et al., Plasma Phys. Control. Fusion 58 034017 (2016), C.A. Lindstrøm et al., Phys. Rev. Lett. **126**, 014801 (2021)

drical symmetry. This yields for the transverse fields near the axis [22],

charge q_b .

High-power and repetition rate plasma accelerators are emerging

Ballpark requirements and state-of-the-art

	FEL	Collider	Current
Charge per bunch (nC)	0.01 - 0.1	0.1 - 1	0.01 - 0.1
Energy gain (GeV)	0.1 - 10	1000	0.1 - 10
Energy spread (%)	0.1	0.1	0.1
Wall-plug efficiency (%)	< 0.1 - 10	10	< 0.1
Emittance (µm)	0.1 - 1	0.01	?
Rep. rate (Hz)	10 ¹ - 10 ⁶	10⁴ - 10 ⁵	10
Avg. beam power (W)	10 ¹ - 10 ⁶	10 ⁶	10

first studies done, R&D in an early stage

R.Zgadzaj et al., Nat. Commun. 11, 4753 (2020)

Technical challenges / unexplored physics

- Plasma recovery physics unexplored
- \rightarrow supported rep. rate / time structure
- Heat deposition into plasma / heat management (~kW / cm)
- Durability of plasma vessels
- Prohibitive numerical demands for self-consistent, nanosecond to millisecond, multi-physics plasma simulations

Stability is improving, would benefit from dedicated & optimized facility

Ballpark requirements and state-of-the-art

	FEL	Collider	Current
Charge per bunch (nC)	0.01 - 0.1	0.1 - 1	0.01 - 0.1
Energy gain (GeV)	0.1 - 10	1000	0.1 - 10
Energy spread (%)	0.1	0.1	0.1
Wall-plug efficiency (%)	< 0.1 - 10	10	< 0.1
Emittance (µm)	0.1 - 1	0.01	?
Rep. rate (Hz)	10 ¹ - 10 ⁶	10 ⁴ - 10 ⁵	10
Avg. beam power (W)	10 ¹ - 10 ⁶	10 ⁶	10
Continuous run	24/1 - 24/7	24/365	24/1
Parameter stability	0.1%	0.1%	1%

Stability is improving

- all sub-systems factor in: RF stability, power supply stability, ...
- \rightarrow affects incoming bunch stability + plasma stability
- \rightarrow benefits from dedicated facility (enable full access to everything)
- plasma acceleration stability control
- \rightarrow needs the right beam controls and diagnostics

Stability is improving, would benefit from dedicated & optimized facility

Ballpark requirements and state-of-the-art

	FEL	Collider	Current
Charge per bunch (nC)	0.01 - 0.1	0.1 - 1	0.01 - 0.1
Energy gain (GeV)	0.1 - 10	1000	0.1 - 10
Energy spread (%)	0.1	0.1	0.1
Wall-plug efficiency (%)	< 0.1 - 10	10	< 0.1
Emittance (µm)	0.1 - 1	0.01	?
Rep. rate (Hz)	10 ¹ - 10 ⁶	10 ⁴ - 10 ⁵	10
Avg. beam power (W)	10 ¹ - 10 ⁶	10 ⁶	10
Continuous run	24/1 - 24/7	24/365	24/1
Parameter stability	0.1%	0.1%	1%

Head-to-tail centroid offsets can seed collective beam-instabilities in plasma

> D. H. Whittum et al., Phys. Rev. Lett. 67, 991 (1991)

Х

Beam-plasma stability management requires special beam controls

Collider is the ultimate challenge, requires specific solutions

Ballpark requirements and state-of-the-art

FEL	Collider	Current
0.01 - 0.1	0.1 - 1	0.01 - 0.1
0.1 - 10	1000	0.1 - 10
0.1	0.1	0.1
< 0.1 - 10	10	< 0.1
0.1 - 1	0.01	?
10 ¹ - 10 ⁶	10⁴ - 10 ⁵	10
10 ¹ - 10 ⁶	10 ⁶	10
24/1 - 24/7	24/365	24/1
0.1%	0.1%	1%
	FEL 0.01 - 0.1 0.1 - 10 0.1 0.1 - 10 101 - 106 101 - 106 24/1 - 24/7 0.1%	FEL Collider 0.01 - 0.1 0.1 - 1 0.1 - 10 1000 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 10 0.01 104 - 105 106 106 24/1 - 24/7 0.1%

- *lowest emittance:* precision beam and plasma control
- *efficiency:* high wall-plug efficiency (energy recovery?)
- rep. rate and avg. power: kW/cm thermal plasma management
- **positron acceleration** with exquisite quality
- **beam polarization** maintenance
- computing capabilities for full start-to-end optimization

Needs a coordinated worldwide effort and funding \rightarrow for a self-consistent collider design \rightarrow to demonstrate viability of technical concepts

Well on track to realize first FEL-quality demonstrator stage (all parameters simultaneously)

Needs solutions specifically developed for particle colliders

Staging plasma modules for access to the energy frontier Serialization of stages comes with challenges

Main motivation:

Reaching higher energy than is available in a single stage (limited by driver energy).

Challenges:

- > In- and out-coupling of drivers (kickers too slow use energy separation in a dipole).
- > Synchronization of drivers (at fs-scale, for injecting at the correct phase).
- > Isochronicity (R_{56}) cancellation/control (for correct beam loading).
- > Emittance preservation between stages:
 - Matching of beta function for all energies (chromaticity due to high divergence).
 - Transverse misalignments (stages must be aligned at the nm $-\mu$ m scale).
 - Dispersion cancellation (from in- and out-coupling dipoles).
 - Coulomb scattering (large beta functions between stages—differential pumping required).
- > Driver distribution scheme (from one linac/ring to all stages with correct delay).
- > CSR management in beam handling.
- > Compactness (combined setup must retain a high (GV/m) average accelerating gradient)

A programmatic attempt to demonstrate staging of beam-driven plasma accelerator modules does not exist.

Review article: Lindstrøm, Phys. Rev. Accel. Beams 24, 014801 (2021)

Source: Pei et al., Proc. PAC'09, p. 2682 (2009)

Plasmas for mid-term particle physics applications

AWAKE scheme enables high-energy experiments

Requirements on emittance are moderate for fixed target and e/p collider experiments Scalable AWAKE technology could be application-ready in 10 year-time frame

Opportunity to use high-energy proton bunches:

- **SPS** 400 GeV, 19 kJ SPS \bullet
- LHC 7TeV, 120 kJ LHC

to drive GeV/m accelerating gradients in a single, long plasma for acceleration of electrons

Develop technology to enable

- high-quality electron beams
- scalable plasma lengths

Applications (talk by M.Wing)

Mid-term (~10 years)

- Fixed target experiments, 30 GeV e-
- Search for dark photons

Long-term

Caldwell et al., Eur Phys J C 76, 463 (2016) Wing et al., Phil Trans A Math Phys Eng Sci., **377**, 2151 (2019)

Very High Energy Electron-Proton (VHEEP) collider

Summary

Scientific goals for the next 5/10 years

- Beam-driven plasma accelerators are closing in on photon science requirements \rightarrow increasing credibility for more complex applications in particle physics
- Beam-driven plasma accelerators can provide opportunities in particle physics in the 10-year time frame
 - \rightarrow AWAKE scheme for high-energy, moderate lumin
 - \rightarrow several other applications (see talks this morning)
- Plasma accelerators R&D is on a promising trajectory with a lot of momentum
- To sustain this momentum for collider specific chal new developments are required
 - technology R&D needs to be intensified - - -
 - culture change and worldwide roadmap
 - ~5 years goal consistent plasma-based collider
 - ~10 years goal dedicated test facility for collider relevant plasma accelerator R&D

nosity		FEL-like parameters	Collide parame
g)	Single stage energy + quality	5 years	partia
ory	Beam energy spread	5 years	5 yea
llongoo	Beam emittance	5 years	partia
lienges,	Wall-plug efficiency	sufficient will be improved	partia
	Rep. rate / avg. power	sufficient	partia
	Multi-stage energy + quality	-	no prog
r design	Positron stage	_	partia 5 years to o
	Beam polarization	-	no prog
	Start-to-end simulations	done	partia

