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Main activities of the VVG

• Numerical simulation of astrophysical sources of  
gravitational radiation (Einstein equations + GRMHD). 

• Waveform generation of astrophysical signals 
employing numerical relativity techniques. 

• Inference of astrophysical parameters: CCSN, CBC. 

• Data analysis with Total Variation and Machine 
Learning algorithms: 

- Gravitational wave denoising. 
- Waveform reconstruction. 
- Glitch classification and mitigation (DetChar).



Our mid-term goal within the LVK

Development of a pipeline for GW data analysis using total-
variation, dictionary-learning, and deep-learning methods.

1. GW data analysis in upcoming LIGO/Virgo science runs. 

2. New algorithms for GW denoising (TV, dictionary-learning, 
and DL methods).  
3. Application to LIGO/Virgo data. Performance assessment for 
glitch denoising. 
4. Development of pipelines for AdV detector monitoring 
activities. 
5. Joint observing scenarios involving GW and EM emission 
from transient sources.

Initial work with Virgo group at ICCUB.



Objectives: 

The central aim of this proposal is to develop and apply ML 
and DL techniques to analyze existing and upcoming GW 
data and to reinforce the chances of detection of new 
GW signals, including signals from Compact Binary 
Coalescences (CBC) and yet undetected burst signals such as 
CCSN, during the next observational periods of advanced LIGO-
Virgo-KAGRA and beyond (i.e. based on third-generation 
detectors such as the Cosmic Explorer or the Einstein Telescope).  

For this purpose this proposal will build a computational 
framework to test and exploit different ML and DL approaches 
which remain unexplored within the LIGO-Virgo-KAGRA 
collaboration.



Objective 1: 

Automatic identification of g-modes and p-modes in 
proto-neutron stars (PNS) using ML classification algorithms.  

PNS properties can be inferred from the features observable in 
numerically-simulated GWs from CCSN.  

This requires the analysis of eigenmodes of PNS and convective 
instabilities and their relationship with the typical frequencies 
observed in the GW spectra of CCSN simulations.

Universal relations for gravitational-wave asteroseismology of proto-neutron stars 
A. Torres-Forné, P. Cerdá-Durán, M. Obergaulinger, B. Müller, and J.A. Font 
Physical Review Letters, 123, 051102 (2019) 

Towards asteroseismology of core-collapse supernovae with gravitational-wave observations - II. Inclusion of 
spacetime perturbations 
A. Torres-Forné, P. Cerdá-Durán, A. Passamonti, M. Obergaulinger, and J.A. Font 
Monthly Notices of the Royal Astronomical Society, 482, 3967-3988 (2019) 

Towards asteroseismology of core-collapse supernovae with gravitational-wave observations - I. Cowling 
approximation 
A. Torres-Forné, P. Cerdá-Durán, A. Passamonti, and J.A. Font 
Monthly Notices of the Royal Astronomical Society, 474, 5272-5286 (2018) 

https://arxiv.org/pdf/1902.10048.pdf
https://arxiv.org/pdf/1806.11366.pdf
https://arxiv.org/pdf/1806.11366.pdf
https://arxiv.org/pdf/1708.01920.pdf
https://arxiv.org/pdf/1708.01920.pdf


PNS asterosismology

At the VVG we have developed a method to analyze modes of oscillation 
of PNS employing results from numerical-relativity simulations of CCSN.  

• Automatically classifies modes: g-modes (buoyancy-driven) y p-
modes (pressure-driven) 

• GREAT code (General Relativistic Eigenmode Analysis Tool)

Ongoing: 

Improve the classification algorithm employing Machine Learning 
techniques. 

Machine Learning and stellar core-collapse asteroseismology – focused 
on the application of clustering techniques (K-Means and Gaussian 
Mixture) to classify oscillation modes of CCSN with GWs.  TFG M. López 
(UV)



We plan on implementing another technique called Support Vector 
Machine.  If the data is linearly separable, this algorithm divides it in 
two different classes. This is not always the case, but we can always 
use a mathematical transformation to make our data linearly 
separable in a higher hyperspace.

Ongoing work to enhance this method. M. López has 
implemented smaller versions of some neural networks such as 
Inception v2, ResNet and Inception-Resnet v3. 

Detection of CCSNe using machine learning 

Collaboration with U. Rome (I. Di Palma, F. Muciaccia, C. Palomba, 
F. Ricci) and GSSI (M. Drago) 

Method based on Convolutional Neural Networks (CNN), a 
classification procedure of time-frequency images with neural 
networks).

New method to observe gravitational waves emitted by core collapse 
supernovae, Astone, P.; Cerdá-Durán, P.; Di Palma, I.; Drago, M.; 
Muciaccia, F.; Palomba, C.; Ricci, F., Physical Review D 98, 122002 (2018)

https://ui.adsabs.harvard.edu/#search/q=author:%22Astone%2C+P.%22&sort=date%20desc,%20bibcode%20desc
https://ui.adsabs.harvard.edu/#search/q=author:%22Cerd%C3%A1-Dur%C3%A1n%2C+P.%22&sort=date%20desc,%20bibcode%20desc
https://ui.adsabs.harvard.edu/#search/q=author:%22Di+Palma%2C+I.%22&sort=date%20desc,%20bibcode%20desc
https://ui.adsabs.harvard.edu/#search/q=author:%22Drago%2C+M.%22&sort=date%20desc,%20bibcode%20desc
https://ui.adsabs.harvard.edu/#search/q=author:%22Muciaccia%2C+F.%22&sort=date%20desc,%20bibcode%20desc
https://ui.adsabs.harvard.edu/#search/q=author:%22Palomba%2C+C.%22&sort=date%20desc,%20bibcode%20desc
https://ui.adsabs.harvard.edu/#search/q=author:%22Ricci%2C+F.%22&sort=date%20desc,%20bibcode%20desc


a) Automatic classification of the oscillation modes of PNS using ML algorithms 
(UV) 

b) Development of Dictionary Learning techniques for CCSN GW signals (UV) 

c) Development of Convolutional Neural Networks for CCSN GW signals (UV, 
Università di Roma “Sapienza”) 

d) Investigations of non-astrophysical noise in the LIGO and Virgo detectors 
(University of Mississippi) 

e) R&D of new methods to improve parameter estimation (U. of Mississippi, ARC 
Centre of Excellence for Gravitational Wave Discovery - OzGrav) 

f) Reconstruction of CCSN GW signals with the Supernova Model Evidence 
Extractor (SMEE) (OzGrav, University of Glasgow) 

g) ML approaches to generate GW signals from CCSN (University of Glasgow) 

h) Deep Learning for CCSN GW signals (EGO, Università di Pisa) 

i) Advanced ML Techniques in Multimessenger Astronomy with CCSN (Columbia 
University)

MACHINE-LEARNING FOR CORE-COLLAPSE SUPERNOVAE IN THE ERA 
OF GRAVITATIONAL-WAVE ASTRONOMY (LVK efforts)



Objective 2: 

Exploration of DL methods for GW detection from CBC (i.e. 
BBH, BNS and BH-NS mergers) and for unmodelled GW sources 
(namely CCSN) using a Residual Network with a regression 
algorithm (e.g. xResNet18)  that can identify the presence of GW 
signals through spectrograms and perform parameter estimation 
of the sources’ properties.

Exploring gravitational-wave detection and parameter inference using Deep Learning methods 
J.D. Alvares, J.A. Font, F.F. Freitas, O.G. Freitas, A.P. Morais, S. Nunes, A. Onofre, and A. Torres-
Forné 
Classical and Quantum Gravity, submitted (2020) 

https://arxiv.org/pdf/2011.10425.pdf


Advance Virgo Sensitivity Curve
Fundamental Noises:  
I. Displacement Noises  
ΔL(f) 

• Seismic noise 
• Radiation Pressure 
• Thermal noise 

Suspensions 
 Optics 

II. Sensing Noises  
Δtphoton(f) 

• Shot Noise 
• Residual Gas 

Technical Noises:

! Hundreds of them…

Acernese et al. 2014

The sensitivity of GW detectors is limited by diverse sources of noise.

Sources of noise



Noise transients - glitches

Gravity Spy, Zevin  et al (2017)

Non-Gaussian transients of noise. Large variety of morphologies.

Effect on detectors 

1. Reduce significance of candidate GW events. 
2. Affect es8ma8on of physical parameters. 
3. Reduce amount of usable data.        

Prompt characterization of noise critical for improving sensitivity.  
Fast methods for glitch classification are needed.

www.zooniverse.org/projects/zooniverse/gravity-spy

https://www.zooniverse.org/projects/zooniverse/gravity-spy


Glitch denoising and mitigation

Application of dictionary learning to denoise LIGO’s blip noise transients, Toores-Forné et al (in preparation)



Objective 3:  

Exploration of DL methods in conjunction with total-variation 
methods for GW denoising and signal reconstruction.  

This subproject will make use of the same GW injections in real 
LIGO-Virgo data as in objective #2 but using a recurrent neural 
network instead.  

The combination of this network with standard GW detections 
methods from the LIGO-Virgo Collaboration might be attempted 
depending on the performance of the network when applied in 
isolation.



Total-variation methods and dictionary-learning 
methods for GW data analysis

Total-variation methods for gravitational-wave denoising: performance tests on Advanced LIGO data 
A. Torres-Forné, E. Cuoco, A. Marquina, J.A. Font, and J.M. Ibánez 
Physical Review D, 98, 084013 (2018) 

Denoising of gravitational wave signals via dictionary learning algorithms 
A. Torres-Forné, A. Marquina, J.A. Font, and J.M. Ibánez 
Physical Review D, 94, 124040 (2016) 

Total-variation-based methods for gravitational wave denoising 
A. Torres, A. Marquina, J.A. Font, and J.M. Ibánez 
Physical Review D, 90, 084029 (2014) 

Classification of gravitational-wave glitches via dictionary learning 
M. Llorens-Monteagudo, A. Torres-Forné, J.A. Font, and A. Marquina 
Classical Quantum Gravity, 36, 075005 (2019) 

Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests 
on Advanced LIGO data 
J. Powell, A. Torres-Forné, R. Lynch, D. Trifiro, E. Cuoco, M. Cavaglia, I.S. Heng, and J.A. Font 
Classical Quantum Gravity, 34, 034002 (2017) 

https://arxiv.org/pdf/1806.07329.pdf
https://arxiv.org/pdf/1612.01305.pdf
http://arxiv.org/pdf/1409.7888
https://arxiv.org/pdf/1811.03867.pdf
http://arxiv.org/pdf/1609.06262.pdf
http://arxiv.org/pdf/1609.06262.pdf


Objective 4:  

Development of generative ML algorithms and their application for 
waveform generation and GW detection.  

Generative Adversarial Networks will be built for waveform 
generation of CCSN and CBC sources, sidestepping the need to 
perform costly numerical-relativity simulations of those systems.  



Objective 5:  

Development and application of acceleration algorithms to carry 
out efficient parameter estimation of GW signals from CBC 
sources.  

With a significant increase in the number of CBC detections in 
upcoming LIGO-Virgo-KAGRA observing runs (O4 and O5) 
parameter estimation is foreseen to be an extremely CPU-
demanding task, demanding the urgent development of efficient 
algorithms to ameliorate those requirements.



Objective 6 

Machine learning to infer astrophysical parameters 
using gravitational waveforms. 

Problem case: 
- BBH waveforms (NR simulations; few 1000s) 
- BNS waveforms (NR simulations; few 100s) 
- Waveforms from actual detections (sample still poor) 
- Use existing NR catalogs. 

Outcome: network prediction for  
- new waveform models 
- masses and spins (BBH) 
- final remnant (BNS) 
- EOS (BNS)



Previous work with BBH catalogs:  

- Using Deep Neural Network (Haegel & Husa, arXiv:1911.01496) 

Our ongoing work: 

We are currently looking into this problem (waveform generation) 
using Generative Adversarial Networks (TensorFlow, Keras). First 
network generates new waveforms and second network 
discriminates.


