

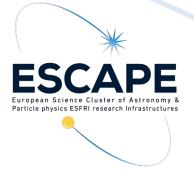
Leveraging ESCAPE monitoring & testing tools for the WLCG Data Challenges

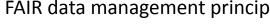
Rizart Dona

CERN

March 17, 2021 - DOMA / TPC Meeting

Science Projects



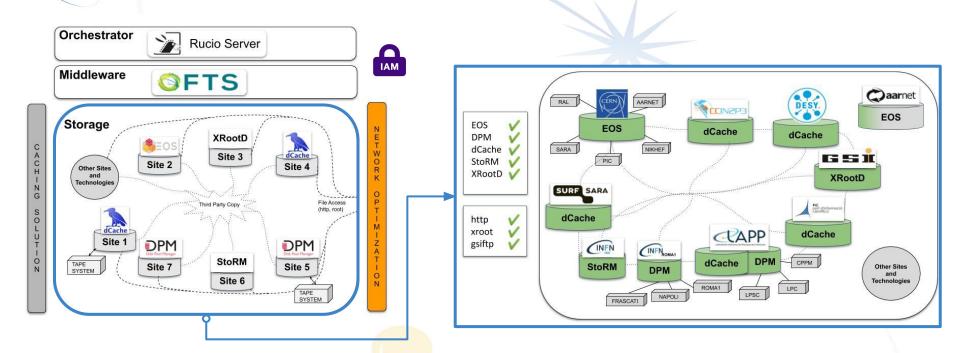


Project Goals

- Prototype an infrastructure adapted to exabyte-scale needs of large science projects
- Ensure sciences **drive** the development of EOSC
- Address FAIR data management principles

Data Centres

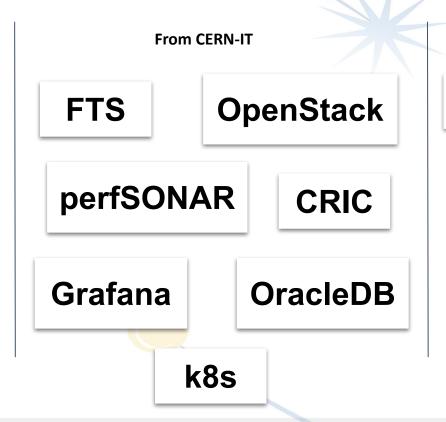
Overview **ESCAPE**


- Data Lake Architecture
- **Testing Infrastructure**
- Monitoring Infrastructure
- **Conclusions & Future Work**
- References

Data Lake Architecture - Storages

 Federated data infrastructure Multiple storage/protocol technologies

Diverse participation of sites



Data Lake Architecture - Services

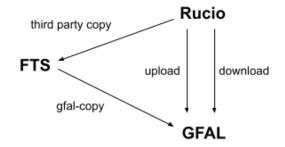
From ESCAPE Partners

IAM

Funded by the European Union's

Horizon 2020 - Grant N° 824064

@rdimaria



Data Lake Architecture - Transfer Stack

The Datalake currently employs three major tools/systems that deal with data transfer/access

- GFAL (Grid File Access Library), a multi-protocol data management library providing an abstraction layer of the grid storage system
 complexity (supports protocols like <u>GridFTP</u>, <u>Http</u> & <u>Root</u>)
- FTS (File Transfer Service), open source software to transfer data reliably and at large scale between storage systems
- Rucio, the data orchestration service, a scalable policy-driven
 scientific data management system that can work with
 large amounts of data, this is the service that users basically interact with

Testing Infrastructure - Continuous Testing

- In order to make sure that all three data transfer/access solutions are functioning
 properly we have continuous testing in place → Crucial step for consolidating the infrastructure
- Separate tests target each component individually and explore scenarios
 that involve both functional testing as well as stress testing → Breaks testing complexity
- Configurable software has been developed and deployed to make the process automatic
- Data from testing is visualized in the equivalent Grafana dashboards that consist the monitoring of the Datalake

Testing Infrastructure - GFAL

- All RSEs (Rucio) consist of one or more endpoints that are associated with a supported protocol
- There are three types of operations that are being done concerning GFAL functional testing
 - **Upload** of a file that is a few bytes long to all the endpoints of all RSEs
 - **Download** of the file that was uploaded in the previous step
 - **Deletion** of the file that was uploaded in the first step
- This flow examines the **basic data operations** one can perform on the storage level of the Datalake

- Per RSE per endpoint results
- Automatically pushing results on an Elasticsearch datasource
- Integrated with **CRIC**
 - Automatically fetching the RSEs configuration before each run
- Python script, deployed inside a container in a Kubernetes cluster @ CERN

Testing Infrastructure - FTS (1/2)

- In this case, the same endpoints as in the GFAL testing are examined
- Goal is to trigger **TPC** transfers between all possible endpoint pairs that participate in the Datalake
- The flow is the following:
 - The toolkit reads from a **configuration file** all endpoint pairs that are to be tested (config example in the picture)
 - Testing folders are being setup, automatic detection of problematic endpoints that will be excluded from the testing if this cannot be achieved
 - For each pair of compatible endpoints an FTS transfer will be triggered
 - 1) Check source for existing files, generate & upload ad-hoc if needed
 - 2) Trigger FTS job, asynchronous action
 - Wait for all jobs to finish, when done **delete** the files that were transferred on the destination endpoint (ensures no quota is exceeded)
- Extensive error handling, flow will continue even if endpoints fail mid-test
- <u>fts-analysis-datalake</u> repo, python code (major refactoring is in progress)

Testing Infrastructure - FTS (2/2)

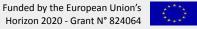
- Testing results are automatically pushed from the FTS server to an **Elasticsearch** datasource (all systems maintained by the relevant teams @ CERN)
- Deployed inside a container in a Kubernetes cluster @ CERN

```
08/12/2020 07:50:17 PM Source: gsiftp://gridftp.grid.sara.nl:2811//pnfs/grid.sara.nl/data/escape/disk/rucio/sara_dcache
08/12/2020 07:50:17 PM Destination: gsiftp://ccdcalitest10.in2p3.fr:2811//pnfs/in2p3.fr/data/escape/cc_in2p3_dcache
08/12/2020 07:50:17 PM Checking source for 4 existing 1000MB files
08/12/2020 07:50:17 PM gfal-ls gsiftp://gridftp.grid.sara.nl:2811//pnfs/grid.sara.nl/data/escape/disk/rucio/sara_dcache/fts-testing/src
08/12/2020 07:50:17 PM Submitting FTS job
08/12/2020 07:50:17 PM FTS job id:36c18076-3986-11eb-ac97-fa163ece561c
```

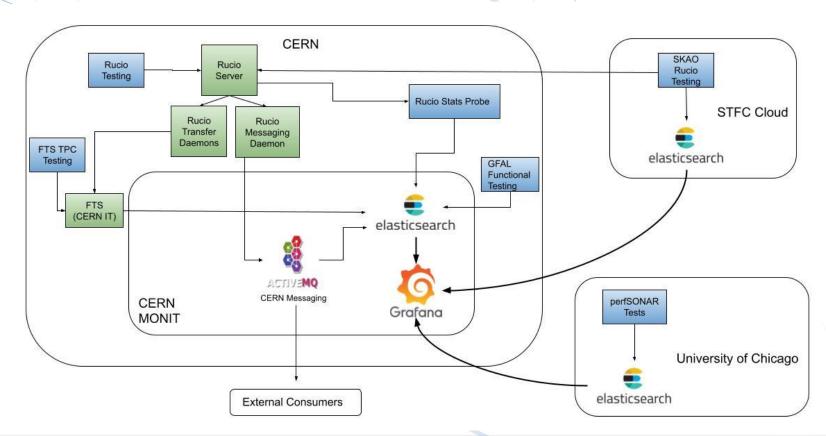
```
08/12/2020 08:51:30 PM Job with id 15df2872-3986-11eb-8204-fa163ece561c finished with job_state:FINISHEDDIRTY | 248/251
08/12/2020 08:51:30 PM Removing testing files from destination
08/12/2020 08:51:30 PM afal-rm (x1) root://atlas-dpm-01.roma1.infn.it:1094//dpm/roma1.infn.it/home/escape/tests/fts-testing/dest
```


Testing Infrastructure - Rucio

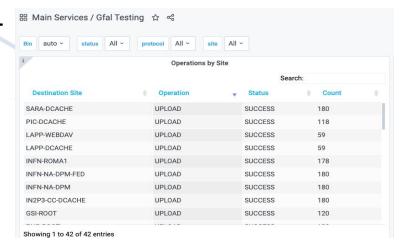
- Reminder: All RSEs (Rucio) consist of one or more endpoints that are associated with a supported protocol
- A <u>bash script</u> is used for fast ad-hoc functional testing
 - Uploads files to all RSEs
 - Triggers replica creation between all pairs with so called Rucio rules
 - Deployed inside a container in a Kubernetes cluster @ CERN
- <u>rucio-analysis</u>: extensible python3 framework for yaml-based Rucio tests
 - Developed and deployed by SKA
 - Same type of tests as the bash script



Monitoring Infrastructure - Software Stack


- Backend storage/messaging technologies used
 - Elasticsearch, a distributed multitenant-capable full-text search engine
 - ActiveMQ, an open source, multi-protocol, Java-based messaging broker
- Visualization platform → **Grafana**
 - A multi-platform open source analytics and interactive visualization web application
 - Hosted @ CERN by Monit, separate ESCAPE organization
 - Supports multiple data sources (ES, InfluxDB, Graphite, MySQL, etc.)
- Our main data sources
 - **Elasticsearch** @ CERN (hosted by Monit) → Retention policy of 12 months
 - **Elasticsearch** @ SKAO → No retention policy in place, limited by storage given

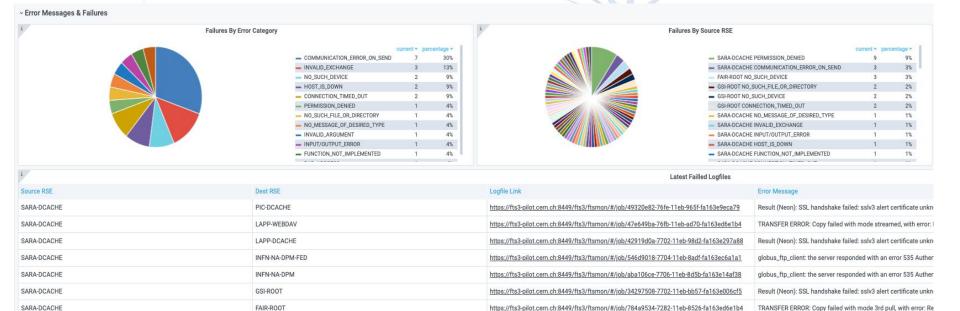
Monitoring Infrastructure - Architecture



Monitoring Infrastructure - GFAL

- Basic GFAL upload/download/delete operations per endpoint
- A user can filter plots by
 - Endpoints
 - Operations (upload, download, delete) SUCCEEDED/FAILED/SKIPPED
 - Protocol (gsiftp, root, http)

Monitoring Infrastructure - FTS (1/2)


- Monitoring TPC transfers between the endpoints
- Main highlights for user
 - Aggregated stats
 - Attempted transfers
 - Percentages
 - Job states
 - Transfer types
 - FTS transfers efficiency matrix
 - Error codes & logfile links

Monitoring Infrastructure - FTS (2/2)

rizart.dona@cern.ch

globus_ftp_client: the server responded with an error 535 Auther

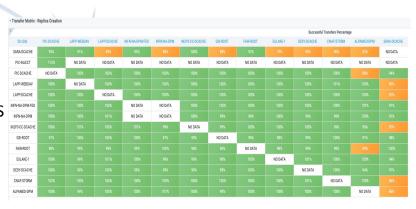
globus ftp client the server responded with an error 535 Author

https://fts3-pilot.cern.ch:8449/fts3/ftsmon/#/job/87828ba4-7707-11eb-aedc-fa163ece561c

https://fte3-pilot.com.ch:8/40/fte3/ftemon/#/joh/72h68h0e-7706-11eh-854h-fs163ec6s1s1

EULAKE-1

DESY-DOACHE


SARA-DCACHE

SADA-DCACHE

Monitoring Infrastructure - Rucio

- Monitoring replica creation/deletion
- Transfer matrix helps user understand the connectivity between RSES
 - Percentages of successful replication
- Table with error codes and logfile links to the actual FST transfers

March 17, 2021

Monitoring Infrastructure - Rucio Stats

- Rucio Stats Probe → fetches periodically the
 relevant stats from Rucio, using the client API to query the DB
- Displays usage per RSE/experiment, number of files and trends over time

Conclusions & Future work

- Testing tools for transfers
 - GFAL
 - FTS
 - Rucio
- Unified Monitoring
 - Views on each component of the transfer stack
 - Network metrics (connected to specific transfers) included → some more accurate than others (Rucio > FTS)
 - Lots of consolidated dashboards for reference
- Future Work
 - o Identify which tools/methodologies will be useful for the WLCG Data Challenges → modifications might be needed
 - Code/functionality enhancements and better error handling
 - Effort to make the tools more generic

ESCAPE Rurgean Science Courter of Astronomy & Perticle physics CSFRI research infrastructures

References

- FTS, https://fts.web.cern.ch/fts/
- GFAL, https://dmc-docs.web.cern.ch/dmc-docs/gfal2/gfal2.html
- Rucio, https://rucio.cern.ch/
- GFAL testing software, https://github.com/ESCAPE-WP2/Utilities-and-Operations-Scripts/tree/master/gfal-sam-testing
- FTS testing software, https://github.com/ESCAPE-WP2/fts-analysis-datalake
- Rucio testing software, https://github.com/ESCAPE-WP2/rucio-analysis
- Elasticsearch, https://www.elastic.co/elasticsearch
- Grafana, https://grafana.com
- Apache ActiveMQ, http://activemq.apache.org
- ESCAPE Grafana Org, https://monit-grafana.cern.ch/d/cHBQ2NjWz/escape-home?orgId=51

Thank you!

Questions?

