

A Modern Arduino Approach for Advanced Physics Laboratories in the Time of COVID An Introduction for Laboratory Courses

Thomas Hebbeker, Kerstin Hoepfner, Shawn Zaleski

III Physikalisches Institut A, RWTH-Aachen University

March 18, 2021

Overview of Our Lab Course

O(150 students)

- Students grouped in pairs
- 4-6 exp. per group
 - Discussion
 - Experiment
 - Report
- \blacksquare $\mathcal{O}(10)$ exp. run each day
- COVID hygiene requirements
- Some exp. supervisors are remote (difficult to facilitate)

Need to add experiments that operate well in both in-person and remote!

A Modern Arduino Approach for Advanced Physics Labs

S. Zaleski

What Does a Take-Home Experiment Look like? Student

- Collects the equipment
- Connects to Zoom (or similar) when starting experiment (agreed times with teacher)
- Remains connected to Zoom while performing experiment
- If problems occur, ask teacher/tutor
- After completing, return equipment

- Connects to Zoom to ask students questions about experiment
- Remains connected to Zoom: Respond to problems/questions from students
- Confirm that equipment returned in satisfactory condition
- Grade student report and issue feedback

An Experiment that Works At-Home and University

- What to look for in a good experiment for in-person and at-home?
 - Compact
 - Inxepensive
 - Easy-to-use
 - Modular
- Microcontrollers (Arduino) are good candidates
 - Fit most of above requirements
 - Many useful sensors
 - Interface with computers

Our Experiment Overview

Primary Student Outcome:

Students measure various physics phenomena and learn how to collect data using modern microcontrollers like Arduino

Students can perform the following measurements:

- Blink an LED
- Displacement, velocity, acceleration
- Apparent weight
- Speed of sound
- Vectors of Earth's grav. and mag. fields
- *Planck's constant*
- Latent heat of fusion of water
- *Heart rate*
- *Cosmic ray background*

Many of these measurements can be compared those made by sensors and apps in mobile phones, etc.

*Will discuss in more detail later

Components Part I

Breadboard (make circuit connections)

Temperature Sensor A Modern Arduino Approach for Advanced Physics Labs

HC-SR04 Sonic Motion Sensor

KY-039 Heart Rate Sensor

S. Zaleski

Components Part II

Analog-to-Digital-Converter (ADC)

Accelerometer

Digital-to-Analog-Converter (DAC)

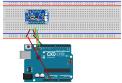
Plenks

A More In-Depth View Of Student Expectations During Lab

Students are expected to do the following for each module of the experiment:

Build circuit

Generally simple circuits with pictures of circuit in manual


Write Arduino code to collect data measurements

- Students not expected to have prior knowledge
- Many hints in lab manual

Write PYTHON program to record data for

analysis

- Our students have significant prior training
- New items for them specific to Arduino learned, e.g. Serial communication
- Analyze the data to create a plot or perform a calculation
- Present the results along with error analysis of the data

fritzing

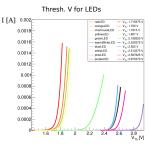
Student Analysis of the Experiment

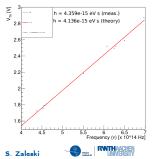
Students are expected to submit the following in their reports to their experiment supervisor:

Arduino Code

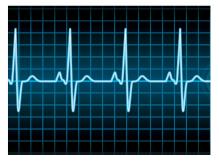
#include<Adafruit_MCP4725.h> #include<Adafruit ADS1015 h> Adafnuit MCP4725 dac: //Instantiate DAC object Adafnuit AD51115 ads(0x48); //Instantiate ADC object with correct address Serial broin (9500): //Regin Serial comunication dac.begin(Oc62); //Start the DAC with correct address //Print something to confirm that it is working ... Serial.orintln("Helle!"): //Set the gain of the ADC ads.setCain(GAIN_ONE); //1x gain +/- 4.000 V 1 bit = 0.125 mV ads.begin(); 7/Begin communication with the ADC //Instantiate ADC read variables and DAC write variable intl6 t adcAl. adcA2: wint32_t dacValue: float darExpectedVoltage //Losp through the Voltage values (here using 12 bit values: //SW corresponds to 4096 bits for(dacValue = 1145: dacValue < 2008: dacValue = dacValue + 1) //Convert output value from bits to valtage dacExpectedVoltage = (5.0/4096.0) * dacValue; delay(250); //Allow time for current to stabilize adcA1 = ads.readADC SingleEnded(1); //Read DAC output voltage adcA2 = ads.readADC_SingleEnded(2); //Read voltage drop across the resistor //Print the data to the Serial Buffer Serial.println(String(dacEspectedveltage, 3) + ", " + String([adcAl * 0.125)/ 1000, 3] + ", " + String((adcA2 * 0.125)/ 1000, 3));

PYTHON code



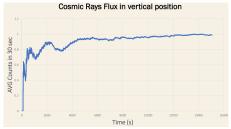


Planck's Constant


- Students write Arduino code to measure the following:
 - Voltage across LED
 - Voltage current through resistor
- Students write PYTHON code to generate:
 - I-V curve for each LED
 - ► Find V_{Th} for each LED
 - Plot V_{Th} vs ν
 - Slope of fit is h
- DELIVERABLES:
 - I-V plot with all LEDs
 - Plot with fit for h
 - Commented Arduino code
 - Commented PYTHON code

Planck Const. Fit

Heart Rate Monitoring


DEMO, example of sensor response that students are looking for

- Students write Arduino code to measure voltage pulse from blood movement in finger
- Students write PYTHON code to calculate heart rate from Arduino data
- DELIVERABLES:
 - Commented Arduino code
 - Commented PYTHON code
 - Heart Rate calculation

Geiger-Mueller counter for Arduino

- Students write Arduino code to collect cosmic ray muon counts using PIN photodiode counter
- Students write PYTHON code to collect data from Arduino and plot
- DELIVERABLES:
 - Commented Arduino code
 - Commented PYTHON code
 - Plot of muon counts as function of time
 - Poisson histogram of number of counts within time window

Courtesy of F. Ivone

Student Feedback

In our first offerings (12 students) we asked them for anonymous feedback. Here's what they said:

- Experiments are easy to work with
- Many simple experiments allowed focusing on specific aspects of microcontrollers
- Enjoyed working with microcontrollers
- Combining multiple technologies (Arduino program & PYTHON program)
- Learning 2nd programming language (C-style Arduino)
- Planck's constant experiment

Student's generally agreed that:

- They learned a lot about working with Arduino
- The Arduino made the experiment more interesting

Summary

- Overall, the experiment operates successfully in-person
- This experiment is well positioned to operate either in person, or at home
- We had our first students on 8 March 2021
- Students complete entire experiment within 8 hours
- Students gain familiarity with Microcontrollers in context of well-understood physics principles
- Identified a few places for improvement

BACKUP

A Modern Arduino Approach for Advanced Physics Labs

15

Lab Course Experiments

Covers detector topics with HEP and Solid State physics applicationsStudents complete 5-7 of the experiments

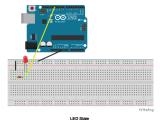
High Energy Physics

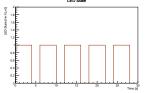
- Particle detectors and radiation protection
- Compton scattering and gamma spectroscopy
- Angular correlation
- Moessbauer effect
- X-ray spectroscopy
- Gas detectors and statistics
- GEM detectors
- Data analysis LEP
- Detector principles
- Stern-Gerlach
- Mini-Auger

A Modern Arduino Approach for Advanced Physics Labs

Solid-State Physics

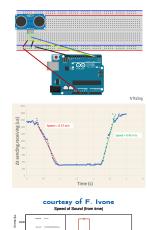
- Thin film technology
- Scanning Tunneling Microscope
- X-ray diffraction
- Magneto-optic Kerr effect
- Neodymium YAG laser
- Electrical conductivity in metals and semiconductors
- Magnetic phase transitions
- NMR spectrometer
- Data acquistion with LABVIEW
- Ultrasound computed tomography
- Characterization of Ultra-short laser pulses s. Zaleski

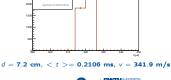

Experiment Structure


- Experiments are 1-2 day experiments
- 1-3 groups of 2 students each
- Students arrive at 9:00 and begin with a discussion part
 - Attendance is taken by experiment supervisor
 - Students answer basic theory and technical questions related to experiment (expected to read manual prior)
 - Brief instruction on setup
- Students then work the remainder of the 1st day completing tasks outline in manual
- Students contact exp. supervisor in event of problems and questions
- Students work until 18:00 and turn off equipment
- Students come back to start following day if 2-day exp.
- Students submit lab report to lab supervisor within 2 weeks of completing exp.

Blinking An LED

- Students write Arduino code to accept input from PC to turn LED on/off
- Students write PYTHON code to turn LED on/off with Arduino
- Students keep the LED on longer than off
- Cycle O(5) times
- PYTHON code should also store data for plotting
- DELIVERABLES:
 - Commented Arduino code
 - Commented PYTHON code
 - Plot of LED state as function of time





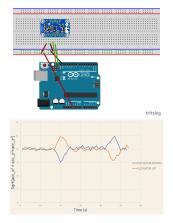
Kinematics and the Speed of Sound

- Students write Arduino code to send and receive sound wave with HC-SR04
- Students write PYTHON program to store position of object from sensor
- Analysis will determine:
 - 1. displacement
 - 2. velocity
 - 3. acceleration
- Students measure time that wave takes to travel distance
- Calculate speed of sound
- DELIVERABLES:
 - Commented Arduino code
 - Commented PYTHON code
 - Kinematic plots
 - Speed of sound value

A Modern Arduino Approach for Advanced Physics Labs

S. Zaleski

19

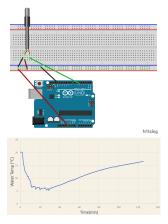

Accelerometer: Earth's Grav. and Mag. Fields

Students write Arduino code to collect values for:

- 1. acceleration
- 2. magnetic field
- Students write PYTHON code to collect values from Arduino and calculate the vectors

DELIVERABLES:

- Commented Arduino code
- Commented PYTHON code
- Vector calculations for the Earth's grav. and mag. fields



Courtesy of F. Ivone

Temperature Sensor: Specific Heat Capacity

- Students write Arduino code to collect temperature from temp sensor
- Students write PYTHON code to collect values from Arduino
- DELIVERABLES:
 - Commented Arduino code
 - Commented PYTHON code
 - Plot of temperature vs. time
 - Calculation of specific heat capacity of water
 - *REVISION* Will use latent heat of fusion of water

Courtesy of F. Ivone

