Transverse Beam Dynamics III

I) Linear Beam Optics
 Single Particle Trajectories
 Magnets and Focusing Fields
 Tune & Orbit

II) The State of the Art in High Energy Machines:
 The Beam as Particle Ensemble
 Emittance and Beta-Function
 Colliding Beams & Luminosity

III) Errors in Field and Gradient:
 Liouville during Acceleration
 The $\Delta p/p \neq 0$ problem
 Dispersion
 Chromaticity
Luminosity

Example: Luminosity at LHC

$$\beta_{x,y}^* = 0.55 \, m$$ \hspace{1cm} $$f_0 = 11.245 \, kHz$$

$$\varepsilon_{x,y} = 5 \times 10^{-10} \, \text{rad} \, m$$ \hspace{1cm} $$n_b = 2808$$

$$\sigma_{x,y} = 17 \, \mu m$$

$$I_p = 584 \, mA$$

$$L = 1.0 \times 10^{34} \, \frac{1}{cm^2 \, s}$$

Make β^* as small as possible !!!
Mini-Beta-Insertions in phase space

A mini-β insertion is always a kind of special symmetric drift space.
→ greetings from Liouville

the smaller the beam size
the larger the beam divergence

Liouville: in reasonable storage rings area in phase space is constant.

\[A = \pi \varepsilon = \text{const} \]
The LHC Insertions

ATLAS R1

Inner Triplet

- IP1
- TAS
- Q1 Q2 Q3
- D1 (1.38 T)

Separation/Recombination

- Tertiary collimator
- s
- 188 mm
- 1.9 K
- Warm

Matching Quadrupoles

- Q4
- D2 (3.8 T)
- Q5
- Q6
- Q7
- 4.5 K

Mini β optics

LHC Error Analysis MAD-X 3.00.03 03/12/08 10.35.00

Momentum offset = 0.00 %

s (m) [10^10]
... finally ... let’s talk about acceleration

crab nebula,

burst of charged particles $E = 10^{20} \text{ eV}$
14.) Liouville during Acceleration

\[\varepsilon = \gamma (s) x^2 (s) + 2\alpha (s)x(s)x'(s) + \beta (s)x'^2 (s) \]

Beam Emittance corresponds to the area covered in the \(x, x' \) Phase Space Ellipse

Liouville: Area in phase space is constant.

But so sorry ... \(\varepsilon \neq \text{const} ! \)

Classical Mechanics:

phase space = diagram of the two canonical variables

position & momentum

\[x \quad p_x \]
According to Hamiltonian mechanics: phase space diagram relates the variables q and p

Liouville's Theorem:

\[\int p \, dq = \text{const} \]

\[\int p_x \, dx = \text{const} \]

... referring to the hor. plane for convenience (i.e. because we are lazy bones) we use in accelerator theory:

\[x' = \frac{d x}{d s} = \frac{d x}{d t} \frac{d t}{d s} = \beta_x = \frac{p_x}{p} \]

\[\int x' \, dx = \int \frac{p_x}{p} \, dx = \text{const} \left(\frac{m_0 c}{\gamma \beta} \right) \]

\[\Rightarrow \quad \varepsilon = \int x' \, dx \propto \frac{1}{\beta \gamma} \]

the beam emittance shrinks during acceleration \(\varepsilon \sim 1/\gamma \)

\[\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \]

\[\beta_x = \frac{v_x}{c} \]
Nota bene:

1.) A proton machine ... or an electron linac ... needs the highest aperture at injection energy !!!
as soon as we start to accelerate the beam size shrinks as $\gamma^{-1/2}$ in both planes.

$$\sigma = \sqrt{\epsilon \beta}$$

2.) At lowest energy the machine will have the major aperture problems,
 \rightarrow here we have to minimise β

3.) we need different beam optics adopted to the energy:
 A Mini Beta concept will only be adequate at flat top.
Example: HERA proton ring

injection energy: 40 GeV \(\gamma = 43 \)
flat top energy: 920 GeV \(\gamma = 980 \)

emittance \(\varepsilon (40\text{GeV}) = 1.2 \times 10^{-7} \)
\(\varepsilon (920\text{GeV}) = 5.1 \times 10^{-9} \)

7 \(\sigma \) beam envelope at \(E = 40 \text{ GeV} \)

... and at \(E = 920 \text{ GeV} \)
The „not so ideal world“

15.) The „$\Delta p / p \neq 0$“ Problem

ideal accelerator: all particles will see the same accelerating voltage.
$\Rightarrow \Delta p / p = 0$

„nearly ideal“ accelerator: Cockroft Walton or van de Graaf
$\Delta p / p \approx 10^{-5}$
RF Acceleration

1928, Wideroe

Energy Gain per "Gap":

\[W = n^* q U_0 \sin \omega_{RF} t \]

drift tube structure at a proton linac (GSI Unilac)

\(n \) number of gaps between the drift tubes
\(q \) charge of the particle
\(U_0 \) Peak voltage of the RF System
\(\Psi_s \) synchronous phase of the particle

500 MHz cavities in an electron storage ring

* RF Acceleration: multiple application of the same acceleration voltage; brilliant idea to gain higher energies
RF Acceleration-Problem: panta rhei !!!
(Heraklit: 540-480 v. Chr.)

just a stupid (and a little bit wrong) example)

\[\nu = 400 \text{ MHz} \]
\[c = \lambda \nu \]
\[\lambda = 75 \text{ am} \]

\[\sin(90^\circ) = 1 \]
\[\sin(84^\circ) = 0.994 \]
\[\frac{\Delta U}{U} = 6.0 \times 10^{-3} \]

Bunch length of Electrons \(\approx 1 \text{ cm} \)

typical momentum spread of an electron bunch:

\[\frac{\Delta p}{p} \approx 1.0 \times 10^{-3} \]
Dispersive and Chromatic Effects: $\Delta p/p \neq 0$

Are there any Problems ???
Sure there are !!!
16.) Dispersion and Chromaticity: Magnet Errors for $\Delta p/p \neq 0$

Influence of external fields on the beam: prop. to magn. field & prop. zu $1/p$

dipole magnet

$$\alpha = \frac{\int B \, dl}{p/e}$$

focusing lens

$$k = \frac{g}{p/e}$$

$$x_D(s) = D(s) \frac{\Delta p}{p}$$

Particle having...

to high energy

to low energy

ideal energy
Dispersion

the typical Formula 1 effect:

Those who are faster (have higher momentum) ...
... are running on a larger circle.

BUT

they are focused nevertheless.
Dispersion

Example: homogeneous dipole field

Matrix formalism:

\[
x(s) = x_\beta(s) + D(s) \cdot \frac{\Delta p}{p}
\]

\[
x(s) = C(s) \cdot x_0 + S(s) \cdot x'_0 + D(s) \cdot \frac{\Delta p}{p}
\]

\[
\begin{pmatrix}
x \\
x'
\end{pmatrix}_{s} =
\begin{pmatrix}
C & S \\
C' & S'
\end{pmatrix}
\begin{pmatrix}
x \\
x'
\end{pmatrix}_{0} +
\frac{\Delta p}{p}
\begin{pmatrix}
D \\
D'
\end{pmatrix}_{0}
\]
or expressed as 3x3 matrix

\[
\begin{pmatrix}
 x \\
 x' \\
 \Delta p_p/p_s
\end{pmatrix} =
\begin{pmatrix}
 C & S & D \\
 C' & S' & D' \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x \\
 x' \\
 \Delta p_p/p_0
\end{pmatrix}
\]

Example

\[
x_\beta = 1 \ldots 2 \text{ mm}
\]
\[
D(s) \approx 1 \ldots 2 \text{ m}
\]
\[
\frac{\Delta p}{p} \approx 1 \cdot 10^{-3}
\]

Amplitude of Orbit oscillation contribution due to Dispersion \(\approx\) beam size

\[\rightarrow\] Dispersion must vanish at the collision point

Calculate \(D, D'\): ... takes a couple of sunny Sunday evenings!

\[
D(s) = S(s) \int_{s_0}^{s_1} \frac{1}{\rho} C(\tilde{s}) \, d\tilde{s} - C(s) \int_{s_0}^{s_1} \frac{1}{\rho} S(\tilde{s}) \, d\tilde{s}
\]
(proof see CAS proc.)
Dispersion is visible

HERA Standard Orbit

HERA Dispersion Orbit

A dedicated energy change of the stored beam → closed orbit is moved to a dispersions trajectory

\[x_p = D(s) \ast \frac{\Delta p}{p} \]

Attention: at the Interaction Points we require \(D = D' = 0 \)
Periodic Dispersion:
„Sawtooth Effect“ at LEP (CERN)

In the arc the electron beam loses so much energy in each octant that the particles are running more and more on a dispersion trajectory.

In the straight sections they are accelerated by the rf cavities so much that they „overshoot“ and reach nearly the outer side of the vacuum chamber.
17.) Chromaticity:
A Quadrupole Error for $\Delta p/p \neq 0$

Influence of external fields on the beam: *prop. to magn. field & prop. zu $1/p$*

Remember the normalisation of the external fields:

- **focusing lens**

 \[
 k = \frac{g}{p/e}
 \]

A particle that has a higher momentum feels a weaker quadrupole gradient and has a lower tune.

definition of chromaticity:

\[
\Delta Q = Q' \frac{\Delta p}{p}
\]
Every individual particle has an individual momentum and thus an individual tune.

Q' is a number indicating the size of the tune spot in the working diagram, Q' is always created if the beam is focussed → it is determined by the focusing strength k of all quadrupoles

$$\Delta Q = -\frac{1}{4\pi} \frac{\Delta p}{p_0} k_0 \beta(s) ds$$

$$Q' = -\frac{1}{4\pi} \oint k(s)\beta(s) ds$$

$k = \text{quadrupole strength}$
$\beta = \text{betafunction}$ indicates the beam size ... and even more the sensitivity of the beam to external fields

Example: LHC

$Q' = 250$
$\Delta p/p = +/- 0.2 \times 10^{-3}$
$\Delta Q = 0.256 \ldots 0.36$

→ Some particles get very close to resonances and are lost

in other words: the tune is not a point it is a pancake
Tune signal for a nearly uncompensated cromaticity
\(Q' \approx 20 \)

Ideal situation: cromaticity well corrected,
\(Q' \approx 1 \)
Tune and Resonances

\[mQ_x + nQ_y + lQ_s = \text{integer} \]

Tune diagram up to 3rd order

... and up to 7th order

Homework for the operateurs: find a nice place for the tune where against all probability the beam will survive
Chromaticity Correction:

We need a magnetic field that focuses stronger those individual particles that have larger momentum and focuses weaker those with lower momentum.

... but that does not exist.

The way the trick goes:

1.) sort the particle trajectories according to their energy
 we use the dispersion to do the job

2.) introduce magnetic fields that increase stronger than linear
 with the distance Δx to the centre

3.) calculate these fields (sextupoles) in a way that the lack of focusing strength is exactly compensated.
Correction of Q':

Need: additional quadrupole strength for each momentum deviation $\Delta p/p$

1.) sort the particles according to their momentum

\[x_D(s) = D(s) \frac{\Delta p}{p} \]

... using the dispersion function

2.) apply a magnetic field that rises quadratically with x (sextupole field)

\[
\begin{align*}
B_x &= \tilde{g}xy \\
B_y &= \frac{1}{2} g(x^2 - y^2)
\end{align*}
\]

\[
\frac{\partial B_x}{\partial y} = \frac{\partial B_y}{\partial x} = \tilde{g}x
\]

--> amplitude dependent gradient
Correction of Q':

Sextupole Magnets:

k_1 normalised quadrupole strength
k_2 normalised sextupole strength

\[k_1(\text{sext}) = \frac{\bar{g}x}{p/e} = k_2 \times x \]
\[= k_2 \times D \frac{\Delta p}{p} \]

Combined effect of „natural chromaticity“ and Sextupole Magnets:

\[Q' = -\frac{1}{4\pi} \left\{ \int k_1(s)\beta(s) \, ds + \int k_2(s)D(s)\beta(s) \, ds \right\} \]

You only should not forget to correct Q' in both planes ...
and take into account the contribution from quadrupoles of both polarities.
Chromaticity Correction:

schematical view
A word of caution: keep non-linear terms in your storage ring low.

\[B_y + iB_x = B_{\text{ref}} \sum_{n=1}^{\infty} (b_n + ia_n) \left(\frac{x + iy}{r_0} \right)^{n-1} \]

"effective magnetic length"

\[B \cdot l_{\text{eff}} = \int B ds \]
Clearly there is another problem …
… if it were easy everybody could do it

Again: the phase space ellipse

for each turn write down – at a given position „s“ in the ring – the single particle amplitude x and the angle x' ... and plot it.

\[
\begin{pmatrix}
 x \\
 x'
\end{pmatrix}_{s1} = M_{\text{turn}} \ast \begin{pmatrix}
 x \\
 x'
\end{pmatrix}_{s0}
\]

A beam of 4 particles – each having a slightly different emittance:
Installation of a weak (!!!) sextupole magnet

The good news: sextupole fields in accelerators cannot be treated analytically anymore.
→ no equations; instead: Computer simulation „particle tracking“
Effect of a strong (!!!) Sextupole ...

→ Catastrophy!

„dynamic aperture“
The Mini-Beta scheme ...
... focusses strongly the beams to achieve smallest possible beam sizes at the IP. The obtained small beta function at the IP is called β^*. Don't forget the cat.

Beam dimension during acceleration: A proton beam shrinks during acceleration in both ytransverse dimensions. We call it unfortunately „adiabatic shrinking“. Nota bene: An electron beam in a ring is growing with energy!!

Dispersion ...
... is the particle orbit for a given momentum difference.

Chromaticity ...
... is a focusing problem. Different momenta lead to different tunes \rightarrow attention ... resonances !!

Sextupoles ...
have non-linear fields and are used to compensate chromaticity. However we have to be careful: Strong non-linear fields can lead to particle losses (dynamic aperture)
2.) Where do we go?

* Physics beyond the Standard Model
* Dark Matter / Dark Energy
FCC-pp - Collider

The Next Generation Ring Collider
What’s next ???

Dark Matter & Dark Energy
Physics beyond the Standard Model
Reconstruction of Dark Matter distribution based on observations

Budget:
Dark Matter: 26 %
Dark Energy: 70 %
Anything else (including us) 4 %
Bibliography

1.) Edmund Wilson: Introd. to Particle Accelerators
Oxford Press, 2001

2.) Klaus Wille: Physics of Particle Accelerators and Synchrotron
Radiation Facilities, Teubner, Stuttgart 1992

3.) Peter Schmüser: Basic Course on Accelerator Optics, CERN Acc.
School: 5th general acc. phys. course CERN 94-01

4.) Bernhard Holzer: Lattice Design, CERN Acc. School: Interm.Acc.phys course,
http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm

5.) Herni Bruck: Accelerateurs Circulaires des Particules,
presse Universitaires de France, Paris 1966 (english / francais)

6.) M.S. Livingston, J.P. Blewett: Particle Accelerators,

7.) Frank Hinterberger: Physik der Teilchenbeschleuniger, Springer Verlag 1997

8.) Mathew Sands: The Physics of e+ e- Storage Rings, SLAC report 121, 1970

9.) D. Edwards, M. Syphers: An Introduction to the Physics of Particle
Accelerators, SSC Lab 1990