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Recap on CTA

● Previous presentation with math and examples (also CZT): 
https://indico.cern.ch/event/996624/

● CTA: chirp transform algorithm. Calculates the Fourier 
transform with arbitrary start and stop frequencies on the 
unit circle and an equal spacing between them.

● Usual calculation (1960s algorithm) ~ 2xFFT + 1xIFFT.

● Expectation on run time: computationally more efficient than 
the FFT when the zoom is larger than roughly 3-4 
compared to the equivalently padded FFT.

https://indico.cern.ch/event/996624/
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Illustration
● 75/128 and 78.5/128 

frequency sinusoids with 1 
and ¾ amplitude added. 
Signal length: 256 samples.

● Hanning window + FFT.
● CTA calculated for the 

256(+50) point signal. ~6x 
resolution.

● Calculating an only two 
point CTA would have been 
sufficient in this example.
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Recap on CZT

● CZT: calculates a more general transform than Fourier with 
arbitrary start and stop frequencies. The transform operates 
along a spiral contour in the z plane vs the circle arc of the 
CTA.

● Usual calculation ~ 2xFFT + 1xIFFT. 

● New since 2019: there is an efficient inverse N log N, 
potentially improving on the 3-4x limitation. Efficient 
implementations are not really available yet.
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Use cases

● Astronomy: long acquired data, but only certain parts 
are interesting. Sometimes can be similar to our use 
cases. 

● The original 1960s CZT was used in CCD sensors 
with applications in space and astronomy.

● Same thing seems to be happening now with the 
inverse, just for data analysis in astronomy.
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Implementations in python

● A summary: https://gist.github.com/endolith/2783807
● Scipy: https://github.com/scipy/scipy/issues/4288
● The new inverse computation is implemented: 

https://pypi.org/project/czt/ or the same on github: 
https://github.com/garrettj403/CZT . Needs testing at the moment. 
But development is active, improved since my last presentation.

● There’s also my own implementation for the classic algorithm in 
examples, development code.

https://gist.github.com/endolith/2783807
https://github.com/scipy/scipy/issues/4288
https://pypi.org/project/czt/
https://github.com/garrettj403/CZT
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C / C++ implementations
● Problem of research: there are many CZT acronyms, so you have to check the code (even after filtering the 

obvious false positives).
● https://github.com/mickey305/CZTransform

– Pure C. Classic algorithm.
– Tested, compiles and works for CTA.
– The FFT is custom, so probably was developed for a very specific purpose. The tests and source code comments are 

in Japanese, so I was relying on Google. Otherwise there is no other documentation.
– Based on the calculations this seems to be CTA at first sight. This is correct technically, since CTA is a special case of 

CZT.

● https://github.com/thejonaslab/pychirpz
– Python and C++. Classic algorithm.
– Based on FFTW and numba https://numba.pydata.org/ .
– Benchmarks for CTA vs FFT, confirming the zoom speed-up compared to FFT. As it can be shown based on the 

algorithm, too.
– Tested, compiles and works for CTA and CZT, better documented.

● No new inverse CZT found in C / C++, and no time yet to write it myself.

https://github.com/mickey305/CZTransform
https://github.com/thejonaslab/pychirpz
https://numba.pydata.org/
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Test setup
● Test aim: confirming algorithmic speed up.

● FFT vs CTA using the same numpy.fft / numpy.ifft for CTA, too, so the comparison has the same 
systematic errors from the software point of view. Therefore using my own CTA implementation.

● Increasing the length of the FFT, and see where CTA catches up on average.

● 9 different zoom settings for CTA for one run, two sets of settings.

– Reproducibility on the same computer. (9 settings with CTA and FFT repetitions).

– Decimation (in time or in frequency) FFT run time is highly sensitive to the length even for roughly the 
same size. (2x9 slightly different zoom settings).

● 10k point scan for FFT length corresponding to different paddings to achieve higher resolution in binning.

● Scan repeated for 2 signal sizes 256 and 2560 to check for transient effects (e.g. computer switching to 
performance mode) and to see the effect on reproducibility.

● perf_counter_ns() for time measurements, single thread performance for algorithm comparison.
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Measurements
● Measurements:

– How well does the algorithm behave?
● Checking systematic deviation due to different partitioning of the DFTs because of 

the different FFT lengths.
 

– How well does the computer behave?
● Checking reproducibility for both FFT and CZT for the same partitioning.

– How is the measured algorithm performance?
● Comparing equivalent FFT and CZTs for a given zoom.
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Results, raw timings
● Line: CTA

● Dotted: FFT.

● L = 256

● There are temporary 
slowdowns when system 
adapts to load. Draws 
some power from the 
network, spins up fan, etc. 
Systematics.

● As expected from a 
decimation algorithm, FFT 
size is critical in both FFT 
and CTA as seen from FFT 
spread here (CTA later).
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Results, raw timings
● Line: CTA

● Dotted: FFT.

● L = 2560

● As expected from a 
decimation algorithm, 
FFT size is critical in 
both FFT and CTA as 
seen from FFT spread 
here.

● Here the raw spread of 
the CTA (straight lines) 
can also be seen.
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Gradient of linear fits
● Reproducible computer  behaviour 

on average.

● Line: CTA.

● Dotted: FFT.

● L = 256.

● About 13% spread in FFT gradient.

● About the same deviation for the 
CTA, which should be ideally 
constant.

● Especially visible in CTA: the 
different zooms can take a very 
different time to run (10k repetition 
of the same calculation). This is 
because of the behaviour of the 
underlying FFTs.

● If a better partitioning exists, a 
slightly longer FFT will run much 
faster – here up to 5x.



23/03/2021 CTA, CZT 13

Gradient of linear fits
● Line: CTA.

● Dotted: FFT.

● L = 2560.

● Spreads tighten 
with larger FFT 
and CTA sizes as 
size and transient 
effect become 
less relevant.
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Equivalent FFT size for a given CTA zoom

CTA: x
● FFT: o
● L = 256
● As expected from the algorithm, the 

larger the zoom, the faster the CTA is 
compared to an equivalent FFT.

● The larger spread in CTA is due to 
systematics, much larger than 
reproducibility.

● The reason is the FFT sizes. The base 
signal length is 256, and CTA does not 
need a lot more points for a much larger 
zoom, where some FFT sizes are much 
faster than others. But the trend is 
representative of bigger sizes, too.

● Hence a zoom 24 can be almost as fast 
as a zoom 6...
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Equivalent FFT size for a given CTA zoom

CTA: x
● FFT: o
● L = 2560
● As expected from the algorithm, 

the larger the zoom, the faster 
the CTA is compared to an 
equivalent FFT.

● Even better seen that the larger 
spread in CTA is due to 
systematics, because the 
algorithm scales exceptionally 
well with zoom, therefore the 
effects of the underlying 
implementation are seen.
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Conclusions
● Existing Python and C / C++ implementations of the CZT were 

surveyed, there are not many.
● The new inverse is only implemented in Python and it is still at the early 

stages of development, but it is in active development.
● A test to compare the performance of the forward CZT with the FFT in 

numpy was carried out.
● On average, the algorithms perform as expected from theory.
● The running time – as expected – is highly sensitive (up to 5x) to the 

precise length of the FFT for a given approximate length.
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Next steps
● For a fair benchmark a proper ICZT with C performance 

is to be implemented.
– Idea: use numba for all calculations.
– With that ICZT can be implemented fast and the rest of the 

calculations will use the same optimisation, too.
– Multi thread capability is promised out of the box, not tested.

● Then compare performance in BLonD.
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