
CZT implementations in C and python
and python performance

BLonD Meeting
M. Vadai

23/03/2021 CTA, CZT 2

Recap on CTA

● Previous presentation with math and examples (also CZT):
https://indico.cern.ch/event/996624/

● CTA: chirp transform algorithm. Calculates the Fourier
transform with arbitrary start and stop frequencies on the
unit circle and an equal spacing between them.

● Usual calculation (1960s algorithm) ~ 2xFFT + 1xIFFT.

● Expectation on run time: computationally more efficient than
the FFT when the zoom is larger than roughly 3-4
compared to the equivalently padded FFT.

https://indico.cern.ch/event/996624/

23/03/2021 CTA, CZT 3

Illustration
● 75/128 and 78.5/128

frequency sinusoids with 1
and ¾ amplitude added.
Signal length: 256 samples.

● Hanning window + FFT.
● CTA calculated for the

256(+50) point signal. ~6x
resolution.

● Calculating an only two
point CTA would have been
sufficient in this example.

23/03/2021 CTA, CZT 4

Recap on CZT

● CZT: calculates a more general transform than Fourier with
arbitrary start and stop frequencies. The transform operates
along a spiral contour in the z plane vs the circle arc of the
CTA.

● Usual calculation ~ 2xFFT + 1xIFFT.

● New since 2019: there is an efficient inverse N log N,
potentially improving on the 3-4x limitation. Efficient
implementations are not really available yet.

23/03/2021 CTA, CZT 5

Use cases

● Astronomy: long acquired data, but only certain parts
are interesting. Sometimes can be similar to our use
cases.

● The original 1960s CZT was used in CCD sensors
with applications in space and astronomy.

● Same thing seems to be happening now with the
inverse, just for data analysis in astronomy.

23/03/2021 CTA, CZT 6

Implementations in python

● A summary: https://gist.github.com/endolith/2783807
● Scipy: https://github.com/scipy/scipy/issues/4288
● The new inverse computation is implemented:

https://pypi.org/project/czt/ or the same on github:
https://github.com/garrettj403/CZT . Needs testing at the moment.
But development is active, improved since my last presentation.

● There’s also my own implementation for the classic algorithm in
examples, development code.

https://gist.github.com/endolith/2783807
https://github.com/scipy/scipy/issues/4288
https://pypi.org/project/czt/
https://github.com/garrettj403/CZT

23/03/2021 CTA, CZT 7

C / C++ implementations
● Problem of research: there are many CZT acronyms, so you have to check the code (even after filtering the

obvious false positives).
● https://github.com/mickey305/CZTransform

– Pure C. Classic algorithm.
– Tested, compiles and works for CTA.
– The FFT is custom, so probably was developed for a very specific purpose. The tests and source code comments are

in Japanese, so I was relying on Google. Otherwise there is no other documentation.
– Based on the calculations this seems to be CTA at first sight. This is correct technically, since CTA is a special case of

CZT.

● https://github.com/thejonaslab/pychirpz
– Python and C++. Classic algorithm.
– Based on FFTW and numba https://numba.pydata.org/ .
– Benchmarks for CTA vs FFT, confirming the zoom speed-up compared to FFT. As it can be shown based on the

algorithm, too.
– Tested, compiles and works for CTA and CZT, better documented.

● No new inverse CZT found in C / C++, and no time yet to write it myself.

https://github.com/mickey305/CZTransform
https://github.com/thejonaslab/pychirpz
https://numba.pydata.org/

23/03/2021 CTA, CZT 8

Test setup
● Test aim: confirming algorithmic speed up.

● FFT vs CTA using the same numpy.fft / numpy.ifft for CTA, too, so the comparison has the same
systematic errors from the software point of view. Therefore using my own CTA implementation.

● Increasing the length of the FFT, and see where CTA catches up on average.

● 9 different zoom settings for CTA for one run, two sets of settings.

– Reproducibility on the same computer. (9 settings with CTA and FFT repetitions).

– Decimation (in time or in frequency) FFT run time is highly sensitive to the length even for roughly the
same size. (2x9 slightly different zoom settings).

● 10k point scan for FFT length corresponding to different paddings to achieve higher resolution in binning.

● Scan repeated for 2 signal sizes 256 and 2560 to check for transient effects (e.g. computer switching to
performance mode) and to see the effect on reproducibility.

● perf_counter_ns() for time measurements, single thread performance for algorithm comparison.

23/03/2021 CTA, CZT 9

Measurements
● Measurements:

– How well does the algorithm behave?
● Checking systematic deviation due to different partitioning of the DFTs because of

the different FFT lengths.

– How well does the computer behave?
● Checking reproducibility for both FFT and CZT for the same partitioning.

– How is the measured algorithm performance?
● Comparing equivalent FFT and CZTs for a given zoom.

23/03/2021 CTA, CZT 10

Results, raw timings
● Line: CTA

● Dotted: FFT.

● L = 256

● There are temporary
slowdowns when system
adapts to load. Draws
some power from the
network, spins up fan, etc.
Systematics.

● As expected from a
decimation algorithm, FFT
size is critical in both FFT
and CTA as seen from FFT
spread here (CTA later).

23/03/2021 CTA, CZT 11

Results, raw timings
● Line: CTA

● Dotted: FFT.

● L = 2560

● As expected from a
decimation algorithm,
FFT size is critical in
both FFT and CTA as
seen from FFT spread
here.

● Here the raw spread of
the CTA (straight lines)
can also be seen.

23/03/2021 CTA, CZT 12

Gradient of linear fits
● Reproducible computer behaviour

on average.

● Line: CTA.

● Dotted: FFT.

● L = 256.

● About 13% spread in FFT gradient.

● About the same deviation for the
CTA, which should be ideally
constant.

● Especially visible in CTA: the
different zooms can take a very
different time to run (10k repetition
of the same calculation). This is
because of the behaviour of the
underlying FFTs.

● If a better partitioning exists, a
slightly longer FFT will run much
faster – here up to 5x.

23/03/2021 CTA, CZT 13

Gradient of linear fits
● Line: CTA.

● Dotted: FFT.

● L = 2560.

● Spreads tighten
with larger FFT
and CTA sizes as
size and transient
effect become
less relevant.

23/03/2021 CTA, CZT 14

Equivalent FFT size for a given CTA zoom

CTA: x
● FFT: o
● L = 256
● As expected from the algorithm, the

larger the zoom, the faster the CTA is
compared to an equivalent FFT.

● The larger spread in CTA is due to
systematics, much larger than
reproducibility.

● The reason is the FFT sizes. The base
signal length is 256, and CTA does not
need a lot more points for a much larger
zoom, where some FFT sizes are much
faster than others. But the trend is
representative of bigger sizes, too.

● Hence a zoom 24 can be almost as fast
as a zoom 6...

23/03/2021 CTA, CZT 15

Equivalent FFT size for a given CTA zoom

CTA: x
● FFT: o
● L = 2560
● As expected from the algorithm,

the larger the zoom, the faster
the CTA is compared to an
equivalent FFT.

● Even better seen that the larger
spread in CTA is due to
systematics, because the
algorithm scales exceptionally
well with zoom, therefore the
effects of the underlying
implementation are seen.

23/03/2021 CTA, CZT 16

Conclusions
● Existing Python and C / C++ implementations of the CZT were

surveyed, there are not many.
● The new inverse is only implemented in Python and it is still at the early

stages of development, but it is in active development.
● A test to compare the performance of the forward CZT with the FFT in

numpy was carried out.
● On average, the algorithms perform as expected from theory.
● The running time – as expected – is highly sensitive (up to 5x) to the

precise length of the FFT for a given approximate length.

23/03/2021 CTA, CZT 17

Next steps
● For a fair benchmark a proper ICZT with C performance

is to be implemented.
– Idea: use numba for all calculations.
– With that ICZT can be implemented fast and the rest of the

calculations will use the same optimisation, too.
– Multi thread capability is promised out of the box, not tested.

● Then compare performance in BLonD.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

