The effect of intermediate resonances in the quark interaction kernel on the time-like electromagnetic pion form factor[†]

Ángel Miramontes López, Hèlios Sanchis Alepuz, Reinhard Alkofer Universidad Michoacana, Morelia — Silicon Austria Labs, Graz — IoP, University of Graz

> Austrian-Croatian-Hungarian Triangle Meeting April 21 - 23, 2021

Motivation: Understanding hadrons from QCD

- Strong Interactions in Theory: QCD
 - The model quantum gauge field theory: Locality, Unitarity, Asymptotic Freedom
 - Non-perturbative phenomena: Dimensional Transmutation, Chiral Anomaly, DχSB, Confinement
- Strong Interactions in Experiment: Hadrons
 - Hadron spectroscopy: many "unexpected" resonances, many "missing" resonances
 - Hadron structure: surprising results
- Quark-hadron duality: orthogonality of quark-glue d.o.f. vs. hadronic states.

A D b 4 A b

Hadron spectroscopy and hadron structure interrelated: Microscopic understanding of effect of resonances on form factors, structure functions, etc.?

Test case: **Pion form factor**¹ Method: Functional method, in particular combination of **Dyson-Schwinger / Bethe-Salpeter eqs.**

Important for the time-like pion form factor:

- (i) Pion as $\bar{q}q$ bound state & as pseudo Goldstone Boson
- (ii) Mixing of ρ -meson with virtual photon

(ρ as $\bar{q}q$ bound state in quark-photon vertex)

(iii) ρ -meson decay $\rho \to \pi \pi$

¹A topic for me since the eighties [K. Langfeld et al., Z. Phys. C42 (1989) 159]

UN

3/15

Time-like pion form factor & Vector Meson Dominance

Experimentally, *e.g.*, from e^+e^- annihilation to $\pi \pi$

Time-like pion form factor & Vector Meson Dominance

Interactions in Dyson-Schwinger/Bethe-Salpeter eqs.

Interactions in this exploratory calculation:

- gluon exchange (Maris-Tandy model)
- pion exchange
- s- and u-channel pion decay contributions

Dyson-Schwinger/Bethe-Salpeter approach to time-like pion form factor

<u>Disclaimer</u>: To keep this calculation feasible a number of technically motivated approximations have been made, see arXiv:2102.12541 for details.

Major technical challenge: Find integration contour in presence of cuts generated by quark propagator poles, pion propagator pole as well as 2-pion cuts and ρ pole in quark-photon vertex!

7/15

For two different parameters η of the Maris-Tandy model:

	m_{π}	f_{π}	$m_ ho$	m_ω	$M_{ ho}$	$\Gamma_{ ho}$
$\eta = 1.5$	0.139	0.138	0.768	0.778	0.750	0.100
$\eta =$ 1.6	0.126	0.138	0.774	0.784	0.759	0.105

 m_{ρ} and m_{ω} : Masses (in GeV) without two-pion decay kernel

 M_{ρ} and Γ_{ρ} (in GeV) determined from ρ -meson pole position defined as $M_{pole}^2 = M_{\rho}^2 - iM_{\rho}\Gamma_{\rho}$ with two-pion decay kernel taken into account

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results

Pion form factor in the space-like $Q^2 > 0$ domain for the model parameters $\eta = 1.5$ and $\eta = 1.6$ compared to experimental data. (The inset illustrates the impact of one of the technically motivated approximations.)

R. Alkofer (Graz)

Results

Absolute value of the pion form factor in the time-like $Q^2 < 0$ domain for the model parameters $\eta = 1.5$ and $\eta = 1.6$.

R. Alkofer (Graz)

Predicted by VMD (without ρ - ω mixing):

$$\begin{aligned} & \textit{Re}\,F_{\pi}(Q^2) - 1 = \\ & -\frac{a_1Q^2 + a_2(Q^2)^2}{b_0 + b_1Q^2 + b_2(Q^2)^2} \\ & \textit{Im}\,F_{\pi}(Q^2) = \\ & \frac{c_1Q^2 + c_2(Q^2)^2}{d_0 + d_1Q^2 + d_2(Q^2)^2} \,. \end{aligned}$$

and verified by our "microscopic model" calculation n-15 n-16 || VMD

	η =1.5	η =1.6	VMD
a ₁	0.5587	0.4149	0.72
a_2	0.8828	0.6827	1.2
b_0	0.3600	0.3600	0.36
b_1	1.2307	1.2517	1.2
b ₂	1.0722	1.1000	1.0037
<i>C</i> ₁	0.0591	0.0997	0
<i>C</i> ₂	0.1295	0.2383	0.2308
d_0	0.3600	0.3600	0.36
d_1	1.1924	1.2464	1.2
d_2	0.9973	1.0916	1.0037

★ 코 ► ★ 코 ►

11/15

크

- Other terms than VMD-predicted ones are tiny: Elaborated calculation yields within error margin the VMD predicted functional form.
- No significant impact from quark propagator poles! (Wanted in view of confinement! But why in this model-based calculation?)
- The resulting time-like pion form factor in the region 0 > Q² > 0.8GeV² is determined by the ρ-meson pole and the two-pion cut!

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- © Exploratory DSE/BSE calculation of pion time-like form factor (... we can do time-like ...)
- © ρ -meson resonance & 2π cut determine time-like pion form factor: Detailed verification of VMD from microscopic model!
- © Despite modelling and technical limitations: Remarkable agreement with experiment.
- Outlook:
- \implies Isospin breaking:
 - Effect of different quark masses vs. electric charges
 - ρ - ω mixing
- $\implies \gamma \pi \pi \pi$ form factor:
 - Anomaly determining soft-point value vs.
 - effect of hadron resonances (ρ & ω)
- → Long-term wish list: Time-like form factors from first-principle "functional" calculations.

ACHT 2021, April 21, 2021

Real and imaginary part of the leading (transversely projected) amplitude of the quark-photon vertex for $p \cdot Q = 0$. The two-pion branch cut starts at $Q^2 = -4m_{\pi}^2$. [A. S. Miramontes,H. Sanchis-Alepuz, EPJA **55** (2019) 170 [arXiv:1906.06227].]

Results

Phase of the pion form factor in the time-like $Q^2 < 0$ domain for the model parameters $\eta = 1.5$ and $\eta = 1.6$ compared to experimental data on pion-pion phase shift.