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What is gintropy

a textual definition

@ Formulas resembling entropy terms
@ by calculating the Gini-index def. due to Corrado Gini
@ (Gross Inequality Natural Index)

@ Its properties are entropy-like, but it is not an entropy.
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Gini and its entropic facets

Definitions

Gini index due to Corrado Gini

Let P(x) be a normalized PDF. The GINI is defined as:

co oo

_ {x=y) _ 1 /
G= ——— — x —y| P(x) P(y). 1
xey) = 2% dy |x —y| P(x) P(y) 1)
0 0
Cumulant population fraction (from the rich end): C(0) = 1.
o) = [ay Py, @
X
Cumulant wealth per average (from the rich end): F(0) =1.
_ 1 7
F(x) = — [dyyP(y). 3)
% )

X
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Gini and its entropic facets

Pareto point
80/20: 80% of the wealth is posessed by 20% of the folk.

oo} oo
Total population: Nt = [dx N(x), total wealth: Xioe = [dx x N(x).
0 0

By this P(x) = N(x)/Niwt and (x) = Xiot/Niot-

At any p-Pareto point: C(xp) = p; and F(xp) = (1 — p)

(1 — p)Xiot is owned by pNi:.

The original definition (1) can be expressed by using the cumulatives as

G = 07de P(X)Zody y<;>X P(y) = 07de P(x) {T—'(x) = %E(x)] (4)

Proof uses the x <> y symmetry under the integral.
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Gini and its entropic facets

GINI

oo oo 1
alternative expressions Jadx P(x)... = Jax 55P(x)... = [dF ...
0 0 0

The cumulative of the cumulative:
o0 oo oo o0 V4 o0
h(x) = /dyé(y) = /dy/dzP(z) = /dz/dyP(z) = /dz(z—x)P(z). (5)
X X y X X X

Indeed, h(x) = (x) F(x) — xC(x) and h(0) = (x).

We have the derivatives: P(x) = —dC/dx, xP(x) = — (x) dF /dx and therefore
x/ {x) = dF/dC. Also C = —dh/dx.

© ®

o oo 1 1
_ X — B — T
G = [&xF(x)P(x) — [dx X C(x)P(x) = [FdC — [CdF. ®)
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Gini and its entropic facets

GINI

expressed via cumulative population

Using that P(x) = %ﬁ and C(x) = —dh/dx, we integrate by parts
T o_&#h T
x) G = /dxh@ — R(0)T(0) —/dxC (x). @)
0 0

Replacing the boundary conditions we arrive at

©

For scaling P(x) = <17> f (&), C and G do not depend directly on (x).
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Gini and its entropic facets

Lorenz curve and gintropy

1 _ .
G = [(FdC — CdF)
(0]

F(x)
1 rich end Lorenz curve .
7T\ cumulative
7 end
o\ (x=0)
=
. 4
rich >,
end //’ ]
b =c) AN ,’/ equality line :
0 1 ()

=]1(¢]

1
JFdC = 1/2 + %,
0

F(x
N (x)
T
J(E)y

;‘;“ _________ - ma’x,\gintropy
N iy

- i

sl £37
T

0 Ip=Clxp)i 1 C({x))
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Gini and its entropic facets

GINI

1 1 i
expressed via gintropy: G = 2 [o(C)dC, ¥ = [FdC-1/2 = [(F — C)dC.
0 0 0

It can be shown that the half-moon area,
:
)dC = / (Fix) - S ot ©)
0

is exactly G/2. The integrand is alike an entropy-density we call it gintropy.

From the Lorentz curve geometry:
© ®
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Gini and its entropic facets

Properties of gintropy

general

@ The gintropy is never negative: = F — C = C — F > 0 inspecting the integral

(oo}

. X/(<i> _1) P(y)dy = /X(1 - %) P(y)dy > 0

0

take first form for y > x > (x), the second form for the opposite case.
@ o(x)ismaximalat x = (x): do/dx = (1 —x/(x)) P(x) changes sign there.

© Convexity: 2% = g —1;

d?c 1 dx 1

&F Wac . wmem <%

e For some PDF it looks like entropy density (see examples later).
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Examples

GINI examples

Communism: all incomes are equal

P(x) = §(x — a) delivers (x) = a, C(x) = ©(a— x) and h(x) = (a — x)O(a — x).
This leads to F = (h+ xC)/ (x) = ©(a — x) and by that
o(x) = F(x) — C(x) = 0. (11)

As a consegence also G = 0.
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Examples

GINI examples

Communism++ : some of them are more equal. 50/50 — 100/0

Two-peak-PDF, P(x) = pd(x — a) + (1 — p)d(x — b), delivers (x) = pa+ (1 — p)b.
C(x) = pO(a—x)+ (1 —p)O(b—x) (12)

Having the value 1 for x < aand (1 — p) for x € [a, b], otherwise 0.

(b=apl=p) _ (0=a)b-(x) 45

6= ) b a) )

b
(17> [pt1 = pax =
Gintropy is a box: o(C) = GO(C(b) < C < C(a)).

= i=p = e B — 1=@ 7= b—
C(b) = 52, Cla)=1- 5. Pareto fraction: Cp = 159, Fp = 48, Guu(p) = \\75 \\g.
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Examples

Lorenz curve examples

Communism++ : some of them are more equal.

0.6 | -

0.4 L |

02F | ' communism++

0 1 1 1 1
0 02 04 506 08 1
C
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Examples

GINI examples
Eco-window: 50/50 — 62/38

The PDF has the form: P(x) = ﬁ ©(a< x < b). Then the cumulative

1 (x < a)
C(x) = b%’; otherwise (14)
0 (b<x)

Obviously (x) = (a+ b)/2 and the GINI

B (b— x)? _1b-—a
G=1 [ /—a)z} 3b+a (19

gintropy: o(C) = 22C(1-0C).

Fora=0: G=1/3, o =C(1— C) andthe Paretoratio: Fp/Cp = 62/38
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Examples

Lorenz curve examples

Eco-window :  equal chance between min and max.

0.8 1

0.6 | .

o2 /.o eco-window
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Examples

GINI examples

Natural

The PDF scales: P(x) = (%efX/O()_

The corresponding tail-cumulative probability: C(x) = e~*/¢X). The GINI becomes

[e o]

1 1
G=1-— — [e/Xgx = _. 16
o [ e = 3 (16)
Entropy formula is constructed as follows:
= /e—y/<x> dy = (x) e/, (17)

X

(x)F=h+xC=(x+(x)e ™™™ and o = re=*/*) c=-CInC !
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Examples

Lorenz curve examples

Natural :  exponential PDF.

02/ natural
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Examples

GINI examples

Capitalism: the rich gets richer

Start: C(x) = (1 4+ Ax) 8~ leads to h(x) = 45(1 + Ax)~E. From this
(x) = B(0) = 1/AB.

GINI becomes

oo
B+ 1
—q_ —2B-2, _ ; 18
G =1 AB/(1+AX) dx 2B+ 1 (18)
0
The gintropy
_ B _
o = Ax(B+1)(1 +Ax)"B=1" = (B+1) (CB+1 = C). (19)
With g = 5%1 we have ¢(C) = ﬁ(éq —C)and G = q‘?.
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Examples

Lorenz curve examples

Capitalism :  linear preference for the rich.

02 capitalism A
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Examples

Gintropy

demonstrations

gintropies
1 T T T T
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Pareto line
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Examples

Gintropy

Comparison of examples

0.6 T T
b communism++
: — = eco-window
05
natural
capitalism
N\
18) .
-/ ’.. -
b .,
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Gini and its entropic f;
Exar

Non-thermal exponentials

Generalized Entropy

"An e~</T fit to e-data justifies a thermal model”

isa FALLACY

Non-equilibrium stationary PDF, superstatistics
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Non-thermal exponentials

Non-thermal exponential PDF
with T = E/ (n).

delivers the characteristic function of the PDF.

For Ph(E) = a"e—2/n!, Poissonian, (n) = a and

ple) = e~ B< (22)
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Non-thermal exponentials

Non-thermal Tsallis—Pareto PDF
with T=E/(nyandg=1+1/(k+1).

Statistics over several events:

delivers the characteristic function of the PDF.

For NBD, Py(E) = (¥)f"(1 + f)="=k~1, one obtains

ple) = (1 + k<i>1 %)
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Non-thermal exponentials

Phase Space and Entropy

Boltzmann — Gibbs — Planck — Einstein

Volume in n dimensions and linear size E:  Qp(E) = e>(6),

p(e) = <esn(E—s)—Sn(E)> _ <e—ss'n(5)+fsg(5)+...>

:< gs'+—2((s;,)2+s”) > (25)
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Non-thermal exponentials

Interpretation of Tsallis parameters

Compare it with

1 2

(@02} T =1 —=+a > +.. (26)
interprets
= (Sh) = (Bn), (27)
and T
a =TSP +8y) = T2 (8) - T2 (28)
Finally g=1+ éffz -3
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Generalized Entropy

Construct another entropy
so that S — K(S) K (Srenyi) = Stsaiis

2
ok(e) = <eK(S(E—E)>—K<S<E)>> =1 ek + %K2+... (29)

Comparison with Tsallis—Pareto PDF delivers
1 _ 7, 9k _ 1" 7\2 2 /<ﬁ>2
= = B K; 7 - (K +(KP) () - K (@0)

eg. K(S) = % leads to Tsallis and Renyi entropies (A32 = 0).

Find K(S) for gx = 1, and then K(S) = >_; piK(— In p;).
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Generalized Entropy

LGGR model

local growth global reset

Transitions: from nto n+ 1 (local) and from any nto 0 (global).

7]

0
Ip = —Z(uP) — AP. 31
o 8X(u) v (31)

Stationary PDF-s:
@ ~ and p rates constant:

P(c0,x) = Q(0) exp—Lx
o

@ ~ constant u(x) = o(x + b) linear:

P(o0, %) = Q(0) (1 + g) i
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Generalized Entropy

Summary

@ There are exp-s which are non-thermal.

@ T stems from E/ (n), g from An?/ (x).

@ Entropy mapping S — K(S) to ensure gx = 1.

@ Several K(S) = ), piK(—In p;) formulas are possible.

@ Gini index — gintropy reconstructs entropy formulas
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Gini and its entroy

Non-therm 4
Generalized Entropy
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Generalized Entropy
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Generalized Entropy
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Generalized Entropy
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