Gini and its entropic facets

Examples

Non-thermal exponentials

Generalized Entropy

Gintropy and the LGGR model for income and particle spectra

Entropy 22 (2020) 879

T.S. Biró^{1,2} Z. Néda³

¹MTA WIGHTER Research Centre for Physics, Budapest, Hungary

²Complexity Science Hub, Vienna, Austria ³Hungarian Institute for Physics, Babeş-Bolyai University Cluj, Romania

version: April 22, 2021 ACHT 2021 talk Apr. 21-23. 2021.

Gini and its entropic facets

Examples

Non-thermal exponentials

Generalized Entropy

What is it?

What is gintropy

a textual definition

- Formulas resembling entropy terms
- by calculating the Gini-index

def. due to Corrado Gini

- (Gross Inequality Natural Index)
- Its properties are entropy-like, but it is not an entropy.

Definitions

Gini index due to Corrado Gini

Let P(x) be a normalized PDF. The GINI is defined as:

$$G \equiv \frac{\langle |x-y| \rangle}{\langle |x+y| \rangle} = \frac{1}{2 \langle x \rangle} \int_{0}^{\infty} dx \int_{0}^{\infty} dy |x-y| P(x) P(y). \tag{1}$$

Cumulant population fraction (from the rich end):

$$\overline{C}(0)=1.$$

$$\overline{C}(x) \equiv \int_{x}^{\infty} dy \, P(y). \tag{2}$$

Cumulant wealth per average (from the rich end):

$$\overline{F}(0) = 1.$$

$$\overline{F}(x) \equiv \frac{1}{\langle x \rangle} \int_{x}^{\infty} dy \, y \, P(y). \tag{3}$$

Pareto point

80/20: 80% of the wealth is posessed by 20% of the folk.

Total population:
$$N_{\text{tot}} = \int\limits_{0}^{\infty} dx \ N(x)$$
, total wealth: $X_{\text{tot}} = \int\limits_{0}^{\infty} dx \ x \ N(x)$.

By this
$$P(x) = N(x)/N_{\text{tot}}$$
 and $\langle x \rangle = X_{\text{tot}}/N_{\text{tot}}$.

At any p-Pareto point:
$$\overline{C}(x_P) = p$$
; and $\overline{F}(x_P) = (1 - p)$

$$(1-p)X_{tot}$$
 is owned by pN_{tot} .

The original definition (1) can be expressed by using the cumulatives as

$$G = \int_{0}^{\infty} dx \, P(x) \int_{x}^{\infty} dy \, \frac{y - x}{\langle x \rangle} \, P(y) = \int_{0}^{\infty} dx \, P(x) \, \left[\overline{F}(x) - \frac{x}{\langle x \rangle} \overline{C}(x) \right] \tag{4}$$

Proof uses the $x \leftrightarrow y$ symmetry under the integral.

alternative expressions
$$\int_{0}^{\infty} dx \, P(x) \dots = \int_{0}^{1} d\overline{C} \dots \qquad \int_{0}^{\infty} dx \, \frac{x}{\langle x \rangle} P(x) \dots = \int_{0}^{1} d\overline{F} \dots$$

The cumulative of the cumulative:

$$\overline{h}(x) \equiv \int_{x}^{\infty} dy \, \overline{C}(y) = \int_{x}^{\infty} dy \int_{y}^{\infty} dz \, P(z) = \int_{x}^{\infty} dz \int_{x}^{z} dy \, P(z) = \int_{x}^{\infty} dz \, (z - x) P(z). \quad (5)$$

Indeed, $\overline{h}(x) = \langle x \rangle \overline{F}(x) - x \overline{C}(x)$ and $\overline{h}(0) = \langle x \rangle$.

We have the derivatives: $P(x) = -d\overline{C}/dx$, $xP(x) = -\langle x \rangle d\overline{F}/dx$ and therefore $x/\langle x \rangle = d\overline{F}/d\overline{C}$. Also $\overline{C} = -d\overline{h}/dx$.

$$G = \int_{0}^{\infty} dx \, \overline{F}(x) \, P(x) \, - \int_{0}^{\infty} dx \, \frac{x}{\langle x \rangle} \, \overline{C}(x) \, P(x) \, = \int_{0}^{1} \overline{F} \, d\overline{C} \, - \int_{0}^{1} \overline{C} \, d\overline{F}. \tag{6}$$

6/33

•

GINI

expressed via cumulative population

Using that $P(x) = \frac{d^2}{dx^2} \overline{h}$ and $\overline{C}(x) = -d\overline{h}/dx$, we integrate by parts

$$\langle x \rangle \ G = \int_{0}^{\infty} dx \, \overline{h} \, \frac{\mathrm{d}^{2} \overline{h}}{\mathrm{d}x^{2}} = \overline{h}(0) \overline{C}(0) - \int_{0}^{\infty} dx \, \overline{C}^{2}(x).$$
 (7)

Replacing the boundary conditions we arrive at

 $G = 1 - \frac{1}{\langle x \rangle} \int_{0}^{\infty} dx \, \overline{C}^{2}(x) = \frac{1}{\langle x \rangle} \int_{0}^{\infty} dx \, \overline{C}(1 - \overline{C}). \tag{8}$

For scaling $P(x) = \frac{1}{\langle x \rangle} f\left(\frac{x}{\langle x \rangle}\right)$, \overline{C} and G do not depend directly on $\langle x \rangle$.

GINTROPY

Lorenz curve and gintropy

$$G = \int_{0}^{1} (\overline{F}d\overline{C} - \overline{C}d\overline{F}) \qquad \int_{0}^{1} \overline{F}d\overline{C} = 1/2 + \Sigma, \qquad \int_{0}^{1} \overline{C}d\overline{F} = 1/2 - \Sigma.$$

8/33

GINI

expressed via gintropy:
$$G = 2 \int_{0}^{1} \sigma(\overline{C}) d\overline{C}, \quad \Sigma = \int_{0}^{1} \overline{F} d\overline{C} - 1/2 = \int_{0}^{1} (\overline{F} - \overline{C}) d\overline{C}.$$

It can be shown that the half-moon area,

$$\Sigma \equiv \int_{0}^{1} \sigma(\overline{C}) d\overline{C} \equiv \int_{0}^{1} (\overline{F}(x) - \overline{C}(x)) d\overline{C}, \tag{9}$$

is exactly G/2. The integrand is alike an entropy-density we call it **gintropy**.

From the Lorentz curve geometry:

$$\int_{0}^{1} \sigma d\overline{C} = \int_{0}^{1} \sigma d\overline{F} = \frac{1}{2}G. \tag{10}$$

Properties of gintropy

general

1 The gintropy is never negative: $\sigma = \overline{F} - \overline{C} = C - F \ge 0$ inspecting the integral

$$\sigma = \int_{x}^{\infty} \left(\frac{y}{\langle x \rangle} - 1 \right) P(y) dy = \int_{0}^{x} \left(1 - \frac{y}{\langle x \rangle} \right) P(y) dy \ge 0$$

take first form for $y \ge x \ge \langle x \rangle$, the second form for the opposite case.

- 2 $\sigma(x)$ is maximal at $x = \langle x \rangle$: $d\sigma/dx = (1 x/\langle x \rangle) P(x)$ changes sign there.
- 3 Convexity: $\frac{d\sigma}{d\overline{C}} = \frac{x}{\langle x \rangle} 1$;

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\overline{C}^2} = \frac{1}{\langle x \rangle} \frac{\mathrm{d}x}{\mathrm{d}\overline{C}} = -\frac{1}{\langle x \rangle P(x)} < 0.$$

For some PDF it looks like entropy density (see examples later).

GINI examples

Communism: all incomes are equal

$$P(x) = \delta(x-a)$$
 delivers $\langle x \rangle = a$, $\overline{C}(x) = \Theta(a-x)$ and $\overline{h}(x) = (a-x)\Theta(a-x)$.

This leads to $\overline{F} = (\overline{h} + x\overline{C})/\langle x \rangle = \Theta(a - x)$ and by that

$$\sigma(x) = \overline{F}(x) - \overline{C}(x) = 0. \tag{11}$$

As a consequence also G = 0.

GINI examples

Communism++: some of them are more equal.

50/50 - 100/0

Two-peak-PDF,
$$P(x) = p\delta(x-a) + (1-p)\delta(x-b)$$
, delivers $\langle x \rangle = pa + (1-p)b$.

$$\overline{C}(x) = p\Theta(a-x) + (1-p)\Theta(b-x)$$
 (12)

Having the value 1 for $x \le a$ and (1 - p) for $x \in [a, b]$, otherwise 0.

$$G = \frac{1}{\langle x \rangle} \int_{a}^{b} p(1-p) dx = \frac{(b-a)p(1-p)}{\langle x \rangle} = \frac{(\langle x \rangle - a)(b-\langle x \rangle)}{(b-a)\langle x \rangle}.$$
 (13)

Gintropy is a box: $\sigma(\overline{C}) = G\Theta(\overline{C}(b) \leq \overline{C} \leq \overline{C}(a))$.

$$\overline{C}(b) = \frac{1-p}{2}, \ \ \overline{C}(a) = 1 - \frac{p}{2}. \qquad \qquad \text{Pareto fraction:} \quad \overline{C}_P = \frac{1-G}{2}, \ \ \overline{F}_P = \frac{1+G}{2}, \ \ G_{\text{max}}(\rho) = \frac{\sqrt{b} - \sqrt{a}}{\sqrt{b} + \sqrt{a}}.$$

Biró

12/33

Lorenz curve examples

Communism++: some of them are more equal.

GINI examples

Eco-window:

50/50 - 62/38

The PDF has the form: $P(x) = \frac{1}{b-a} \Theta(a \le x \le b)$. Then the cumulative

$$\overline{C}(x) = \begin{cases} 1 & (x < a) \\ \frac{b-x}{b-a} & \text{otherwise} \\ 0 & (b < x) \end{cases}$$
 (14)

Obviously $\langle x \rangle = (a+b)/2$ and the GINI

$$G = 1 - \frac{1}{\langle x \rangle} \left[a + \int_{a}^{b} \frac{(b-x)^{2}}{(b-a)^{2}} dx \right] = \frac{1}{3} \frac{b-a}{b+a}.$$
 (15)

 $\sigma(\overline{C}) = \frac{b-a}{b+a}\overline{C}(1-\overline{C}).$ gintropy:

For
$$a=0$$
: $G=1/3$, $\sigma=\overline{C}(1-\overline{C})$ and the Pareto ratio: $\overline{F}_P/\overline{C}_P=62/38$

Lorenz curve examples

Eco-window: equal chance between min and max.

GINI examples

Natural

68/32

The PDF scales: $P(x) = \frac{1}{\langle x \rangle} e^{-x/\langle x \rangle}$.

The corresponding tail-cumulative probability: $\overline{C}(x) = e^{-x/\langle x \rangle}$. The GINI becomes

$$G = 1 - \frac{1}{\langle x \rangle} \int_{0}^{\infty} e^{-2x/\langle x \rangle} dx = \frac{1}{2}.$$
 (16)

Entropy formula is constructed as follows:

$$\overline{h} = \int_{x}^{\infty} e^{-y/\langle x \rangle} dy = \langle x \rangle e^{-x/\langle x \rangle}.$$
 (17)

$$\langle x \rangle \overline{F} = \overline{h} + x \overline{C} = (x + \langle x \rangle) e^{-x/\langle x \rangle}$$
 and $\sigma = \frac{x}{\langle x \rangle} e^{-x/\langle x \rangle}$

$$\sigma = -\overline{C} \ln \overline{C} \quad !$$

Lorenz curve examples

Natural: exponential PDF.

GINI examples

Capitalism: the rich gets richer

Start:
$$\overline{C}(x)=(1+Ax)^{-B-1}$$
 leads to $\overline{h}(x)=\frac{1}{AB}(1+Ax)^{-B}$. From this $\langle x \rangle = \overline{h}(0)=1/AB$.

GINI becomes

$$G = 1 - AB \int_{0}^{\infty} (1 + Ax)^{-2B-2} dx = \frac{B+1}{2B+1}.$$
 (18)

The gintropy

$$\sigma = Ax(B+1)(1+Ax)^{-B-1} = (B+1)\left(\overline{C}^{\frac{B}{B+1}} - \overline{C}\right).$$
 (19)

With
$$q=\frac{B}{B+1}$$
 we have $\sigma(\overline{C})=\frac{1}{1-q}(\overline{C}^q-\overline{C})$ and $G=\frac{1}{q+1}$.

Lorenz curve examples

Capitalism: linear preference for the rich.

Gintropy

demonstrations

Gintropy

Comparison of examples

Gini and its entropic facets
Examples
Non-thermal exponentials
Generalized Entropy

"An $e^{-\varepsilon/T}$ fit to ε -data justifies a thermal model"

is a FALLACY

Non-equilibrium stationary PDF, superstatistics

Non-thermal exponential PDF

with $T = E/\langle n \rangle$.

$$\rho(\varepsilon) = \left\langle \frac{\Omega_n(E - \varepsilon)}{\Omega_n(E)} \right\rangle = \left\langle \left(1 - \frac{\varepsilon}{E} \right)^n \right\rangle. \tag{20}$$

Statistics over several events:

$$\rho(\varepsilon) = \sum_{n=0}^{\infty} \left(1 - \frac{\varepsilon}{E}\right)^n P_n(E). \tag{21}$$

delivers the characteristic function of the PDF.

For $P_n(E) = a^n e^{-a}/n!$, Poissonian, $\langle n \rangle = a$ and

$$\rho(\varepsilon) = e^{-\frac{\langle n \rangle}{E} \varepsilon} \tag{22}$$

Non-thermal Tsallis-Pareto PDF

with
$$T = E/\langle n \rangle$$
 and $q = 1 + 1/(k+1)$.

Statistics over several events:

$$\rho(\varepsilon) = \sum_{n=0}^{\infty} \left(1 - \frac{\varepsilon}{E}\right)^n P_n(E). \tag{23}$$

delivers the characteristic function of the PDF.

For NBD, $P_n(E) = \binom{k}{n} f^n (1+f)^{-n-k-1}$, one obtains

$$\rho(\varepsilon) = \left(1 + \frac{\langle n \rangle}{k+1} \frac{\varepsilon}{E}\right). \tag{24}$$

Phase Space and Entropy

Boltzmann – Gibbs – Planck – Einstein

Volume in *n* dimensions and linear size *E*: $\Omega_n(E) = e^{S_n(E)}$.

$$\rho(\varepsilon) = \left\langle e^{S_n(E-\varepsilon)-S_n(E)} \right\rangle = \left\langle e^{-\varepsilon S'_n(E) + \frac{\varepsilon^2}{2} S''_n(E) + \dots} \right\rangle$$
$$= \left\langle 1 - \varepsilon S'_n + \frac{\varepsilon^2}{2} \left((S'_n)^2 + S''_n \right) + \dots \right\rangle \tag{25}$$

Interpretation of Tsallis parameters

Compare it with

$$\left(1+(q-1)\frac{\varepsilon}{T}\right)^{-\frac{1}{q-1}}=1-\frac{\varepsilon}{T}+q\frac{\varepsilon^2}{2T^2}+\ldots \tag{26}$$

interprets

$$\frac{1}{T} = \langle S'_n \rangle = \langle \beta_n \rangle, \tag{27}$$

and

$$q = T^2 \left\langle (S'_n)^2 + S''_n \right\rangle = T^2 \left\langle \beta_n^2 \right\rangle - \frac{\mathrm{d}T}{\mathrm{d}E}. \tag{28}$$

Finally

$$q = 1 + \frac{\Delta \beta_n^2}{\langle \beta_n \rangle^2} - \frac{1}{C}.$$

Construct another entropy

so that $S \to K(S)$

$$K(S_{Renyi}) = S_{Tsallis}$$

$$\rho_{K}(\varepsilon) = \left\langle e^{K(S(E-\varepsilon)) - K(S(E))} \right\rangle = 1 - \varepsilon K_{1} + \frac{\varepsilon^{2}}{2} K_{2} + \dots$$
 (29)

Comparison with Tsallis-Pareto PDF delivers

$$\frac{1}{T_K} = \langle \beta \rangle \ K'; \qquad \frac{q_K}{T_k^2} = (K'' + (K')^2) \left\langle \beta^2 \right\rangle - K' \frac{\langle \beta \rangle^2}{C}. \tag{30}$$

e.g. $K(S) = \frac{e^{(1-q)S}-1}{1-q}$ leads to Tsallis and Renyi entropies $(\Delta \beta^2 = 0)$.

Find
$$K(S)$$
 for $q_K = 1$, and then $K(S) = \sum_i p_i K(-\ln p_i)$.

LGGR model

local growth global reset

<u>Transitions:</u> from n to n + 1 (local) and from any n to 0 (global).

$$\frac{\partial}{\partial t}P = -\frac{\partial}{\partial x}(\mu P) - \gamma P. \tag{31}$$

Stationary PDF-s:

• γ and μ rates constant:

$$P(\infty, x) = Q(0) \exp{-\frac{\gamma}{\mu}x}$$

• γ constant $\mu(x) = \sigma(x+b)$ linear:

$$P(\infty, x) = Q(0) \left(1 + \frac{x}{b}\right)^{-1 - \gamma/\sigma}$$

Summary

- There are exp-s which are non-thermal.
- T stems from $E/\langle n \rangle$, q from $\Delta n^2/\langle x \rangle$.
- Entropy mapping $S \to K(S)$ to ensure $q_K = 1$.
- Several $K(S) = \sum_i p_i K(-\ln p_i)$ formulas are possible.
- Gini index → gintropy reconstructs entropy formulas

REFERENCES

References

LGGR model

- Income data analysis
 Z. Néda, I. Gere, T. S. Biró, G. Toth, N. Derzsy: Scaling in Income Inequalities and its Dynamical Origin Physica A (2020) 124491
- Citation analysis
 Z. Néda, L. Varga, T. S. Biró: Science and Facebook: the same popularity law!
 PLOS ONE 12 (2017) 0179656
- Review of LGGR model
 T. S. Biró, Z. Néda: Unidirectional random growth with resetting Physica A 499 (2018) 335
- Random, beyond linear master eq.
 T. S. Biró, Z. Néda, A. Telcs: Entropic Divergence and Entropy Related to Nonlinear Master Equations Entropy 21 (2019) 993
- Thermal Power-Law
 T. S. Biró, P. Ván, G. G. Barnaföldi, K. Ürmössy: Statistical power law due to reservoir fluctuations and the universal thermostat independence principle Entropy 16 (2014) 6497-6514

GINTROPY

Bibliographical Notes

Networks and citation dynamics

- Tsallis/Pareto degree distribution in huge networks Stefan Thurner, Fragiskos Kyriakopoulos, Constantino Tsallis: Unified model for network dynamics exhibiting nonextensive statistics Phys. Rev. E 76 (2007) 036111
- Avalanche Master Equation for Citations
 A. Schubert, W. Glänzel: A dynamic look at a class of skew distributions. A model with scientometric applications Scientometrics 6 (1984) 149-167
- Waring distribution
 - J. O. Irwin: The Place of Mathematics in Medical and Biological Statistics J. Roy. Stat. Soc. A 126 (1963) 1-45
- Generalized Waring distribution
 J. O. Irwin: The Generalized Waring Distribution Applied to Accident Theory J. Roy. Stat. Soc. A 131 (1968)
- 205-225

 Rate reconstruction from a truncated integral
 W. Glänzel, A. Telcs, A. Schubert: Characterization by Truncated Moments and Its Application to
- W. Glanzel, A. Teics, A. Schubert: Characterization by Truncated Moments and its Application to Pearson-Type Distributions Z. Wahrscheinlichkeitstheorie verw. Gebiete 66 (1984) 173-183

 Avalanche Master ed. for networks
- P. L. Krapivsky, S. Redner, F. Leyvraz: Connectivity of Growing Random Networks Phys. Rev. Lett. 85 (2000) 4629-4632
- Waring Degree Distribution in Network eq.8 in P. L. Krapivsky, G. J. Rodgers, S. Redner: Degree Distributions of Growing Networks Phys. Rev. Lett. 86 (2001) 5401-5404
- 8 Hypergeometrical result in aging site network
 S. N. Dorogovtsev, J. F. F. Mendes, Evolution of networks with aging of sites Phys. Rev. E 62 (2000) 1842-1845

Bibliographical notes

On citation statistics

- Citation universality
 - A. Chatterjee, A. Asim Ghosh, B. K. Chakrabarti, Universality of citation distributions for academic institutions and journals PLOS ONE 11 (2016) e0146762
- Article citations E. S. Vierra, J. A. N. F. Gomes, Citation to scientific articles: Its distribution and dependence on the article features J. Infometrics 4 (2010) 1
- Citation of individuals
 - O. S. Garanina, M. Yu. Romanovsky, Citation distribution of individual scientists: approximations of stretched exponential distribution with power law tails arxiv: 1605.03741 (2016)
- Cut power law C. Tsallis, M. P. de Albuquerque, Are citations of scientific papers a case of nonextensivity? EPJ B 13 (2000) 777
- 13 Did the citation distribution change? M. L. Wallace, V. Lariviére, Y. Gingras, Modelling a Century of Citation Distribution J. Infometrics 3 (2009) 296
- 4 A century of citations
 - S. Redner, Citation Statistics from 110 Years of Physical Review Physics Today 58 (2005) 49
- The Zipf limit
 Z. K. Silagadze, Citations and the Zipf–Mandelbrot's law arxiv: physics/9901035