Azimuthal correlations of D mesons with charged particles with the ALICE experiment at the LHC

Frajna Eszter

Frajna Eszter

ACHT 2021

Physics motivation

- High-energy nucleus-nucleus collisions make it possible to study the properties of the QGP medium through the observed changes in the jet fragmentation.
- In p(d) + A collisions, CNM effects can be studied.

- The suppression of the away-side jets was observed in angular correlation measurements at RHIC.
- This was one of the first evidences of the strongly interacting Quark Gluon Plasma.

Heavy-flavour correlations in pp collisions

- Understanding jet structure with angular correlations
 - Full jet reconstruction is problematic at low momenta because of the high background. Solution: measuring the angular correlation of final-state hadrons.
 - Near-side correlation peak is sensitive to fragmentation
 - Away-side is sensitive to hard QCD production
 - Both sensitive to multi-parton interactions (MPI), initial and final-state radiations (ISR,FSR)
- Correlations with heavy quarks
 - Sensitivity to the charm and beauty quark production, flavor-dependent fragmentation, dead cone effect and hadronisation processes
 - Sensitivity to QCD production mechanisms (eg. LO flavor pair creation, NLO gluon splitting/Flavor excitation)

The ALICE detector

- Excellent particle identification capabilities down to low momenta with the TPC
- Heavy-flavor identification is aided by secondary vertex reconstruction in the ITS

Analysis strategy

- In both soft and hard processes, the direction of the produced particles are correlated
- Associated charged particles with D mesons as the trigger
 - sensitive to the charm-quark production, fragmentation, and hadronisation processes in proton-proton collisions
- Pseudorapidity(η) and azimuth angle(ϕ)
- Calculating the $\Delta\eta$ and $\Delta\phi$ differences
- Associated yield per trigger

$$\frac{1}{N_{\rm trigger}} \frac{{\rm d}^2 N_{\rm assoc.}}{{\rm d}\Delta\varphi {\rm d}\Delta\eta}$$

ALI-PUB-14107

(illustration: h-h correlations in Pb-Pb at $sqrt{s}=2.76$ TeV)

ACHT 2021

Reconstruction of D mesons in ALICE

- pp and p-Pb collisions at $\sqrt{s_{\text{NN}}}$ =5.02 TeV
- charged hadron tracks reconstructed in the ITS and TPC
- topological reconstruction of secondary vertexes
- D-meson raw yields extracted from invariant mass fits in several p_T intervals

D-meson reconstruction:

- $D^+ \rightarrow K^- \pi^+ \pi^+$ BR~ 9.5%
- $D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$ BR ~ 2.6%

BR ~ 3.9%

• $D^0 \rightarrow K^- \pi^+$

Evaluation and correction of the azimuthalcorrelation functions

- D-meson candidates are selected from the +/- 2σ peak region
- Correlation distribution $C(\Delta \phi, \Delta \eta)$ evaluated in several p_T^D and p_T^{assoc} intervals
- Acceptance corrections based on mixed event technique, and reconstruction efficiency corrections are applied for both the trigger and associated particles
- The combinatorial background, properly normalized from the sideband, is subtracted from the peak-region correlation:

D-h correlation peak fits

Average of D⁰, D⁺, D^{*+} contributions The fit function:

- a constant term b describing the flat contribution below the correlation peaks,
- a generalised Gaussian term describing the near-side peak,
- a Gaussian reproducing the away-side peak.

 $\pmb{\alpha}$: is related to the variance of the function, hence to its width

 $\boldsymbol{\beta}$: drives the shape of the peak (the Gaussian function is obtained for $\beta = 2$)

$$f(\Delta \varphi) = b + \frac{Y_{\rm NS} \cdot \beta}{2\alpha \Gamma(1/\beta)} \cdot e^{-\left(\frac{\Delta \varphi}{\alpha}\right)^{\beta}} + \frac{Y_{\rm AS}}{\sqrt{2\pi}\sigma_{\rm AS}} \cdot e^{\frac{(\Delta \varphi - \pi)^2}{2\sigma_{\rm AS}^2}}$$

near-side widths of the correlation peaks are described by the square root of the variance:

$$\alpha \sqrt{\Gamma(3/\beta)/\Gamma(1/\beta)}$$

Comparison of results in pp and p–Pb collisions

•

Comparsion to Monte Carlo simulations (near-side)

Near-side and away-side: sensitivity to fragmentation and parton shower

 Best description by POWHEG+PYTHIA6, POWHEG LO+PYTHIA6 and PYTHIA8 & Yields typically underestimated by HERWIG 7 & NLO models predict slightly broader peaks & EPOS3 typically overpredicts the yields

Comparsion to Monte Carlo simulations (away-side)

Near-side and away-side: sensitivity to fragmentation and parton shower

- Best description by **POWHEG+PYTHIA6**, **POWHEG LO+PYTHIA6** and **PYTHIA8** & Yields typically underestimated by HERWIG 7 & NLO models predict slightly broader peaks & **EPOS3** typically overpredicts the yields
- **PYTHIA6** (Perugia11) overpredicts both the yields and widths & **PYTHIA8** (4C) overpredicts low-p_T yields and widths

Comparsion to Monte Carlo simulations (baseline)

Near-side and away-side: sensitivity to fragmentation and parton shower

- Best description by **POWHEG+PYTHIA6**, **POWHEG LO+PYTHIA6** and **PYTHIA8** & Yields typically underestimated by **HERWIG 7** & NLO models predict slightly broader peaks & **EPOS3** typically overpredicts the yields
- **PYTHIA6** (Perugia11) overpredicts both the yields and widths & **PYTHIA8** (4C) overpredicts low-p_T yields and widths

Baseline: Sensitive to the underlying event

- p_T^{assoc}<1 GeV: best description by **PYTHIA**
- p_T^{assoc}>1 GeV: best description by HERWIG 7
- POWHEG NLO and LO are the same in all ranges (not trivial since influence expected from NLO charm contributions)

EPJC 80 (2020) 979

INVESTIGATION OF CORRELATIONS USING PYTHIA 8

Different tunes

Monash: EPJC 74 (2014) 8, 3024 MonashStar: EPJC 76 (2016) 3, 155 4C: JHEP 1103 (2011) 032

Near-side peak yield

- Near side peaks are similarly predicted
- Significantly lower baseline for MonashStar (~20% at max)
- Different underlying events

Frajna Eszter

Different colour reconnection models

- Mode 0 : The MPI-based original Pythia 8 scheme.
- Mode 1 : The new QCD based scheme.
- Mode 2 : The new gluon-move model.
- Reconnection off.

A tendency for a narrowing of the near-side and away-side peak with increasing p_T^{D} .

An increasing trend of the near-side and away-side yield with increasing $p_{\rm T}^{\rm D}$.

Baseline: Other parameters than CR off are mostly the same => difference only in underlying event.

Frajna Eszter

Dead-cone effect

Disable the charm quark mass in order to sort the mass cone effect and the color charge effect.

Slight differences in the near-side width and yield.

Baseline: Slight difference in underlying event at low $p_{\rm T}$.

Frajna Eszter

ACHT 2021

Different parton level contributions

Near-side yield: significant contribution of FSR at higher trigger $p_T^{trigger}$. Near-side width and shape: Not affected by partonic processes. This suggests that the near-side peak is primarily determined by fragmentation.

Different parton level contributions

Away-side yield: Significant contribution from MPI.

Away-side width: Contributions of parton-level effects make it wider as expected (especially ISR). FSR=off overshoots all=ON.

Different parton level contributions

Baseline: Mostly affected by MPI (which generates the underlying event). Also influenced by initial- and final state radiations Weak $p_{\rm T}$ -leading dependence.

Heavy-flavour fragmentation (Lund vs. Peterson models)

By default, the Lund fragmentation formula is used in PYTHIA:

$$f(z) = \frac{(1-z)^a}{z} \exp\left(-\frac{bm_{\perp h}^2}{z}\right)$$

Peterson formula is a fragmentation function for heavy quarks. We use this instead of the Lund formula. For fits to experimental data, better agreement can be obtained.

$$f(z) = \frac{1}{z(1 - \frac{1}{z} - \frac{\epsilon}{1 - z})^2}$$

Hint of different trends, but **no significant difference between the two model.**

Frajna Eszter

ACHT 2021

Prompt and non-prompt D-meson separation

Near-side yield and away-side yield: non-prompt D meson is significantly higher. (~50% max)

Prompt and non-prompt D-meson separation

Near-side and away-side width and shape: significantly different \overline{z} near-side shape at low p_{T} .

Prompt and non-prompt D-meson separation

Baseline:Significantly higher baseline for non-prompt D meson (~10% at max)

Summary

ALICE measurements of azimuthal-correlation distributions of D⁰, D^{*+}, and D⁺ mesons with charged particles in pp and p–Pb collisions at 5.02 TeV

- No strong dependence on system (pp vs. pPb): the fragmentation and hadronisation of charm quarks is **not** strongly influenced by cold-nuclear-matter effects.
- Best description by POWHEG+PYTHIA: importance of NLO processes in correlations.
- HERWIG underestimates near-side yields and baseline at low $p_{\rm T}$: shortcomings of cluster fragmentation model.

Investigation of correlations using simulation components

- Different PYTHIA tunes: importance of underlying event contribution to background.
- Important role of *colour reconnection*, but no significant difference between colour reconnection models.
- Contribution of *parton-level effects* (ISR,FSR and MPI) to underlying event and away-side peak.
- No significant difference depending on Lund vs. Peterson fragmentation model.
- Slight differences when setting the *c-quark mass to 0*: role of dead cone effect in fragmentation.
- Correlations: a tool to statistically separate prompt and non-prompt contributions.

This work has been supported by the Hungarian NKFIH OTKA FK 131979 and K 135515 grants as well as the NKFIH 2019-2.1.6-NEMZ_KI-2019-00011 project.