On the mass spectrum of glueballs with even charge parity

Markus Q. Huber

Institute of Theoretical Physics, Giessen University

MQH, Phys.Rev.D 101, arXiv:2003.13703 MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C 80, arXiv:2004.00415

ACHT2021 April 21, 2021

Markus Q. Huber

Giessen University

JUSTUS-LIEBIG-

INIVERSITAT

DFG Deutsche Forschungsgemeinschaft

a

April 21, 2021

QCD bound states

Bound states in QCD

Mesons

Baryons

QCD bound states

Bound states in QCD

Giessen Universit

April 21, 2021

Glueball observations

Experimental candidates, but situation not conclusive.

Scalar glueball: 0^{++} , mixing with scalar isoscalar mesons

Candidate reaction: $J/\psi \rightarrow \gamma + 2g$

Glueball observations

Experimental candidates, but situation not conclusive.

Scalar glueball: 0⁺⁺, mixing with scalar isoscalar mesons

Candidate reaction: $J/\psi \rightarrow \gamma + 2g$

Recent analysis of BESIII data [Sarantsev, Denisenko, Thoma, Klempt '21]:

Future experiments: e.g., PANDA, GlueX

QCD bound states

Glueball calculations

Yang-Mills theory

- "Isolated" problem: only gluons
- Clean picture: well-established lattice results

QCD bound states

Glueball calculations

Yang-Mills theory

- "Isolated" problem: only gluons
- Clean picture: well-established lattice results

Unquenching on the lattice [Gregory et al. '12]:

- Much higher statistics required (poor signal-to-noise ratio)
- Continuum extrapolation and inclusion of fermionic operators still to be done
- Mixing with q
 q
 q
 challenging
- Tiny (e.g., 0⁺⁺, 2⁺⁺) to moderate unquenching effects (e.g., 0⁻⁺) found

QCD bound states

Glueball calculations

Yang-Mills theory

- "Isolated" problem: only gluons
- Clean picture: well-established lattice results
- Functional methods: High quality input available for bound state equations

Unquenching on the lattice [Gregory et al. '12]:

- Much higher statistics required (poor signal-to-noise ratio)
- Continuum extrapolation and inclusion of fermionic operators still to be done
- Mixing with q
 q
 q
 challenging
- Tiny (e.g., 0^{++} , 2^{++}) to moderate unquenching effects (e.g., 0^{-+}) found

Hadrons from bound state equations

Integral equation: $\Gamma(q, P) = \int dk \, \Gamma(k, P) \, S(k_{+}) \, S(k_{-}) \, K(k, q, P)$

Hadrons from bound state equations

Bound state equations

Glueball BSE

Need \ldots and solve for \rightarrow . \rightarrow Mass

Bound state equations

Glueball BSE

Need \mathfrak{M} and solve for \mathfrak{F} . \rightarrow Mass Not quite...

Glueball BSE

Gluons couple to ghosts \rightarrow Include 'ghostball'-part. (First step: no quarks \rightarrow Yang-Mills theory)

Glueball BSE

Need $(\mathfrak{M}, \rightarrow)$ and $4\times$, solve for \rightarrow and \rightarrow . \rightarrow Mass

Construction of kernel

Consistency with input: Apply same construction principle.

Glueball BSE

Need $(\mathfrak{M}, - - -)$ and $4 \times \mathbb{I}$, solve for $\rightarrow -$ and $\rightarrow -$. \rightarrow Mass

Construction of kernel

Consistency with input: Apply same construction principle.

Previous BSE calculations for glueballs:

- [Meyers, Swanson '13]
- [Sanchis-Alepuz, Fischer, Kellermann, von Smekal '15]
- [Souza et al. '20]
- [Kaptari, Kämpfer '20]

⇒ Input is important for quantitative predictive power!

[MQH, Fischer, Sanchis-Alepuz '20]

Markus	Q. H	luber
--------	------	-------

Giessen University

April 21, 2021

Bound state equations

Kernel construction

From 3PI effective action truncated to three-loops:

[Fukuda '87; McKay, Munczek '89; Sanchis-Alepuz, Williams '15; MQH, Fischer, Sanchis-Alepuz '20]

- Some diagrams vanish for certain quantum numbers.
- Full QCD: Same for quarks \rightarrow Mixing with mesons.

Equations of motion from 3-loop 3PI effective action

Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

Self-contained system of equations with the scale as the only input.

Equations

Equations of motion from 3-loop 3PI effective action

Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

Self-contained system of equations with the scale as the only input.

Truncation \rightarrow 3-loop expansion of 3PI effective action [Berges '04]

- 4 coupled integral equations with full kinematic dependence.
- Sufficient numerical accuracy required for renormalization.
- One- and two-loop diagrams [Meyers, Swanson '14; MQH '17].

Results

Landau gauge propagators

Gluon dressing function:

- Family of solutions: Nonperturbative completions of Landau gauge [Maas '10]?
- Realized by condition on *G*(0) [Fischer, Maas, Pawlowski '08; Alkofer, MQH, Schwenzer '08]

Gluon propagator:

Ghost dressing function:

April 21, 2021

orrelation functions

Results

Concurrence of functional methods

Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:

[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; MQH '20]

orrelation functions

Results

Concurrence of functional methods

Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:

[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; MQH '20]

DSE vs. FRG:

[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; Cyrol et al. '16; MQH '20]

April 21, 2021

orrelation functions

Results

DSE vs. FRG:

Concurrence of functional methods

Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:

Beyond this truncation

- Further dressings of three-gluon vertex [Eichmann, Williams, Alkofer, Vujinovic '14]
- Effects of four-point functions [MQH '16, MQH '17, Corell et al. '18, MQH '18]

April 21, 2021

Glueballs

BSE

Solving a BSE

ueballs |

BSE

Solving a BSE

Consider the eigenvalue problem (Γ is the BSE amplitude)

 $\mathcal{K} \cdot \Gamma(P) = \lambda(P) \Gamma(P).$

 $\lambda(P^2) = 1$ is a solution to the BSE \Rightarrow Glueball mass $P^2 = -M^2$

ueballs |

BSE

Solving a BSE

Consider the eigenvalue problem (Γ is the BSE amplitude)

$$\mathcal{K} \cdot \Gamma(\mathbf{P}) = \lambda(\mathbf{P}) \Gamma(\mathbf{P}).$$

 $\lambda(P^2) = 1$ is a solution to the BSE \Rightarrow Glueball mass $P^2 = -M^2$

Calculation requires quantities for

$$k_{\pm}^2 = P^2 + k^2 \pm 2\sqrt{P^2 k^2} \cos \theta = -M^2 + k^2 \pm 2 i M \sqrt{k^2} \cos \theta.$$

 \Rightarrow Complex momentum arguments.

Extrapolation method

- Extrapolation to time-like P² using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger '68]
- Average over extrapolations using subsets of points for error estimate

Extrapolation method

- Extrapolation to time-like P² using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger '68]
- Average over extrapolations using subsets of points for error estimate

Test extrapolation for solvable system: Heavy meson

[MQH, Sanchis-Alepuz, Fischer '20]

ilueballs

Method

Extrapolation of $\lambda(P^2)$ for glueballs

Higher eigenvalues: Excited states.

lueballs

Method

Extrapolation of $\lambda(P^2)$ for glueballs

Higher eigenvalues: Excited states.

Physical solutions for $\lambda(P^2) = 1$.

lueballs R

Results

Glueballs masses for $0^{\pm+}$

All results for $r_0 = 1/418(5)$ MeV.

[MQH, Fischer, Sanchis-Alepuz '20]

lueballs Results

Glueballs masses for $0^{\pm +}$

All results for $r_0 = 1/418(5)$ MeV.

[MQH, Fischer, Sanchis-Alepuz '20]

Under conjecture that choice of solution is a gauge choice: Explicit test of gauge independence!

Tested that results are independent of family of solutions.

Markus Q. Huber

Giessen Universit

April 21, 2021

Glueballs

Results

Glueball masses for $J^{\pm+}$

Lattice:

*: identification with some uncertainty

[†]: conjecture based on irred. rep of octahedral group

[MQH, Fischer, Sanchis-Alepuz, in preparation]

April 21, 2021

• Quantitatively reliable correlation functions (Euclidean) from functional equations

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results
 - Concurrence of different functional methods

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results
 - Concurrence of different functional methods
- Connection to observables: Glueballs

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results
 - Concurrence of different functional methods
- Connection to observables: Glueballs
- Systematic improvements (now) possible

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results
 - Concurrence of different functional methods
- Connection to observables: Glueballs
- Systematic improvements (now) possible
- Direct access to analytic structure [Fischer, MQH '20]

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results
 - Concurrence of different functional methods
- Connection to observables: Glueballs
- Systematic improvements (now) possible
- Direct access to analytic structure [Fischer, MQH '20]

Thank your for your attention.

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators. Example: For $J^{PC} = 0^{++}$ glueball take $O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$:

 $D(x - y) = \langle O(x)O(y) \rangle$

- $\bullet \rightarrow$ Lattice: Mass from this correlator by exponential Euclidean time decay.
- Complicated object in a diagrammatic language: 2-, 3- and 4-gluon contributions

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.

Example: For $J^{PC} = 0^{++}$ glueball take $O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$:

 $D(x - y) = \langle O(x)O(y) \rangle$

- $\bullet \rightarrow$ Lattice: Mass from this correlator by exponential Euclidean time decay.
- Complicated object in a diagrammatic language: 2-, 3- and 4-gluon contributions

Put total momentum on-shell and consider individual 2-, 3- and 4-gluon contributions. \rightarrow Each can have a pole at the glueball mass.

 A^4 -part of D(x - y), total momentum on-shell:

Charge parity

Transformation of gluon field under charge conjugation:

$$A^a_\mu
ightarrow -\eta(a) A^a_\mu$$

where

$$\eta(a) = \begin{cases} +1 & a = 1, 3, 4, 6, 8\\ -1 & a = 2, 5, 7 \end{cases}$$

Color neutral operator with two gluon fields:

$$A^a_\mu A^a_
u o \eta(a)^2 A^a_\mu A^a_
u = A^a_\mu A^a_
u.$$

 $\Rightarrow C = +1$

Negative charge parity, e.g.:

$$egin{aligned} d^{abc} A^a_\mu A^b_
u A^c_
ho &
ightarrow - d^{abc} \eta(a) \eta(b) \eta(c) A^a_\mu A^b_
u A^c_
ho &= \ - d^{abc} A^a_\mu A^b_
u A^c_
ho. \end{aligned}$$

Only nonvanishing elements of the symmetric structure constant d^{abc}: zero or two indices equal to 2, 5 or 7.

Landau gauge vertices

- Nontrivial kinematic dependence of ghost-gluon vertex
- Simple kinematic dependence of three-gluon vertex
- Four-gluon vertex from solution

Four-gluon vertex:

Three-gluon vertex:

April 21, 2021

[MQH '20]

Some properties of the Landau gauge solution

 Slavnov-Taylor identities (gauge invariance): Vertex couplings agree down to GeV regime

[MQH '20]

Some properties of the Landau gauge solution

 Slavnov-Taylor identities (gauge invariance): Vertex couplings agree down to GeV regime

 Renormalization: First parameter-free subtraction of quadratic divergences
 ⇒ One unique free parameter (family of solutions)

Giessen Univers

Landau gauge propagators in the complex plane

Propagators for complex momenta

- Reconstruction from Euclidean results: mathematically ill-defined, bias in solution
- Direct calculation from functional methods possible, e.g., contour deformation or spectral DSEs [Horak, Pawlowski, Wink '20]

Landau gauge propagators in the complex plane

Propagators for complex momenta

- Reconstruction from Euclidean results: mathematically ill-defined, bias in solution
- Direct calculation from functional methods possible, e.g., contour deformation or spectral DSEs [Horak, Pawlowski, Wink '20]

Contour deformation: Special technique to respect analyticity (avoid branch cuts in the integrand)

QED3		[Maris '95 (QED)]
Quark propagator		[Alkofer, Fischer, Detmold, Maris '04]
Self-consistent solution: Ray technique, YM propagators		
		[Strauss, Fischer, Kellermann '12; Fischer, MQH '20]
Glueball correlators	[Windisch, Alkofe	r, Haase, Liebmann '13; Windisch, MQH, Alkofer '13]
Meson decays		[Weil, Eichmann, Fischer, Williams '17; Williams '18]
Spectral functions at	T > 0	[Pawlowski, Strodthoff, Wink '18]
Quark-photon vertex		[Miramontes, Sanchis-Alepuz '19]
Scalar scattering amplication	plitude	[Eichmann, Duarte, Pena, Stadler '19]

April 21, 2021

Landau gauge propagators in the complex plane

Appearance of branch cuts for complex momenta forbids integration directly to cutoff.

Deformation of integration contour necessary [Maris '95]. Recent resurgence: [Alkofer et al. '04; Windisch, MQH, Alkofer, '13; Williams '19; Miramontes, Sanchis-Alepuz '19; Eichmann et al. '19], ...

Ray technique for self-consistent solution of a DSE: [Strauss, Fischer, Kellermann; Fischer, MQH '20].

Markus Q. Huber

Landau gauge propagators in the complex plane

Technique to resp. analyticity (avoid branch cuts in integrand): Contour deformation

Simpler truncation:

Landau gauge propagators in the complex plane

Technique to resp. analyticity (avoid branch cuts in integrand): Contour deformation

- Current truncation leads to a pole-like structure in the gluon propagator.
- Analyticity up to 'pole' confirmed by various tests (Cauchy-Riemann, Schlessinger, reconstruction)
- No proof of existence of complex conjugate poles due to simple truncation.

[Fischer, MQH '20]

April 21, 2021