The Spectrum

 Of
Grand-unified theories

Elizabeth Dobson, Axel Maas, Bernd Riederer

$22^{\text {st }}$ of April 2021
 ACHT 21
 Online

NAWI Graz
Natural Sciences

Der Wissenschaftsfonds.

What is this talk about?

Review: 1712.04721

What is this talk about?

- GUTs are an attractive BSM scenario
- Spectra are usually determined from perturbation theory

What is this talk about?

- GUTs are an attractive BSM scenario
- Spectra are usually determined from perturbation theory
- Lattice results disagree qualitatively

What is this talk about?

- GUTs are an attractive BSM scenario
- Spectra are usually determined from perturbation theory
- Lattice results disagree qualitatively
- Explained by manifest gauge invariance qualitatively and by the Fröhlich-Morchio-Strocchi mechanism quantitatively

Review: 1712.04721

Grand-unified theories

- Hypercharges are quantized in the standard model
- Anomaly freedom requires careful balance of all three gauge interactions
- Running coupling almost unify at a high scale

Grand-unified theories

- Hypercharges are quantized in the standard model
- Anomaly freedom requires careful balance of all three gauge interactions
- Running coupling almost unify at a high scale
- Why?

Grand-unified theories

- Hypercharges are quantized in the standard model
- Anomaly freedom requires careful balance of all three gauge interactions
- Running coupling almost unify at a high scale
- Why?
- Unification of all gauge interactions would explain these features

Grand-unified theories

- Hypercharges are quantized in the standard model
- Anomaly freedom requires careful balance of all three gauge interactions
- Running coupling almost unify at a high scale
- Why?
- Unification of all gauge interactions would explain these features
- Does such a theory exist, which has as a lowenergy effective theory the standard model?

Consistency conditions

- Requires to have as light degrees of freedom the standard model particles
- Concentrate on the gauge boson/Higgs sector

Consistency conditions

- Requires to have as light degrees of freedom the standard model particles
- Concentrate on the gauge boson/Higgs sector
- Usual procedure:
- Choose a gauge group (e.g. SU(5))
- Add suitable Higgs particles to use a Brout-EnglertHiggs effect to break it to $\mathrm{SU}(3) \times U(1)$
- Additional gauge bosons (leptoquarks) and surplus Higgs need to be heavy compared to the standard model
- Need massless (gluon, photon), massive (W,Z) and one Higgs left

Consistency conditions

- Requires to have as light degrees of freedom the standard model particles
- Concentrate on the gauge boson/Higgs sector
- Usual procedure:
- Choose a gauge group (e.g. SU(5))
- Add suitable Higgs particles to use a Brout-EnglertHiggs effect to break it to $\mathrm{SU}(3) \times U(1)$
- Additional gauge bosons (leptoquarks) and surplus Higgs need to be heavy compared to the standard model
- Need massless (gluon, photon), massive (W,Z) and one Higgs left
- Should be testable on the lattice

A toy model: SU(3)->SU(2)

- Consider an SU(3) with a single fundamental Higgs

A toy model: SU(3)->SU(2)

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Coupling g and some numbers $f^{a b c}$

A toy model: SU(3)->SU(2)

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Coupling g and some numbers $f^{a b c}$ and $t_{a}^{i j}$

A toy model: SU(3)->SU(2)

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{v} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Couplings g, v, λ and some numbers $f^{a b c}$ and $t_{a}^{i j}$

A toy model: SU(3)->SU(2)

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{v} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Couplings g, v, λ and some numbers $f^{a b c}$ and $t_{a}^{i j}$
- There is a global $\mathrm{U}(1)$ symmetry for the Higgs only

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action
- Choose a suitable gauge and obtain 'spontaenous gauge symmetry breaking': SU(3) \rightarrow SU(2)

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action
- Choose a suitable gauge and obtain 'spontaenous gauge symmetry breaking': SU(3) \rightarrow SU(2)
- Get masses and degeneracies at treelevel

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action
- Choose a suitable gauge and obtain 'spontaenous gauge symmetry breaking': SU(3) \rightarrow SU(2)
- Get masses and degeneracies at treelevel
- Perform perturbation theory

Spectrum

Gauge-dependent
Vector Scalar
‘SU(3) \rightarrow SU(2)'

A problem on the lattice

[Fröhlich et al.'80,

- Elementary fields are gauge-dependent

problem on the lattice

- Elementary fields are gauge-dependent
- Change under a gauge transformation

problem on the lattice

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice

problem on the lattice

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there

problem on the lattice

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there
- Just a figure of speech
- Actually just ordinary gauge-fixing

A problem on the lattice

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there
- Just a figure of speech
- Actually just ordinary gauge-fixing
- Physics has to be expressed in terms of manifestly gauge-invariant quantities

A problem on the lattice

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there
- Just a figure of speech
- Actually just ordinary gauge-fixing
- Physics has to be expressed in terms of manifestly gauge-invariant quantities
- And this includes non-perturbative aspects

A problem on the lattice

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there
- Just a figure of speech
- Actually just ordinary gauge-fixing
- Physics has to be expressed in terms of manifestly gauge-invariant quantities
- And this includes non-perturbative aspects...
- ...even at weak coupling [Gribov78,Singer'7, Fijikawe'82]

A problem on the lattice

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there
- Just a figure of speech
- Actually just ordinary gauge-fixing
- Physics has to be expressed in terms of manifestly gauge-invariant quantities
- And this includes non-perturbative aspects...
- ...even at weak coupling [Gribov78, Singer 7 , frujikawa'82]
- Especially on the lattice: No gauge-fixing necessary

Physical states

- Need physical, gauge-invariant particles

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W
(W) W

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

How to make predictions

- JPC and custodial charge only quantum numbers

How to make predictions

- J ${ }^{\text {PC }}$ and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure
- Depends on theory. Here:
- Integer J, any P, C
- Uncharged or charged under (Higgs) U(1)

Spectrum

Gauge-dependent
Vector Scalar

Gauge-dependent Vector Scalar

Gauge-invariant

Gauge-dependent Vector Scalar

Gauge-dependent
Gauge-invariant Vector Scalar

- Qualitatively different spectrum

Gauge-dependent Vector Scalar

Gauge-invariant

- Qualitatively different spectrum
- Gauge-dependent particles can also be calculated

Gauge-dependent Vector Scalar

Gauge-invariant

- Qualitatively different spectrum
- Gauge-dependent particles can also be calculated

Gauge-dependent
Vector Scalar $\begin{aligned} & \text { Scalar } \\ & \text { singlet }\end{aligned}$

Gauge-dependent
Vector Scalar $\begin{aligned} & \text { Scalar } \\ & \text { singlet }\end{aligned}$

Gauge-invariant
Vector singlet

Gauge-dependent
Vector Scalar $\begin{aligned} & \text { Scalar } \\ & \text { singlet }\end{aligned}$

Gauge-invariant

 Vector Vector singlet non-singlet$2 x$

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

Higgs field

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

(h) n

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+\left\langle\boldsymbol{\eta}^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle+O(g, \lambda)
\end{gathered}
$$

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle \\
+\left\langle\boldsymbol{\eta}^{+}(x) \boldsymbol{\eta}(y)\right\rangle\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle+O(g, \lambda)
\end{gathered}
$$

4) Compare poles on both sides

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory Bound state mass
4) Compare poles on both sides

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory Bound state mass

$$
\begin{aligned}
& \begin{array}{l}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+\left\langle q^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle \pm
\end{array} \\
& 2 \times \text { Higgs mass: } \\
& \text { Scattering state }
\end{aligned}
$$

4) Compare poles on both sides

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

Bound
state mass

$$
\begin{aligned}
& \frac{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle}{+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)} v^{2} \eta^{+}(x) \eta(y)
\end{aligned}
$$

4) Compare poles on both sides

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator
0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& +v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle \quad \text { Standard }
\end{aligned}
$$

Perturbation Theory
3) Standard perturbation theory Bound state mass

$$
\begin{aligned}
& \frac{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle}{+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)}+v^{2}\left\langle\eta^{+}(x) \eta(y)\right.
\end{aligned}
$$

4) Compare poles on both sides

Fröhlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator
0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$ Calculable: $\begin{aligned} & \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\ & \text { 2009.06671 }\end{aligned}$
3) Standard perturbation theory

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle \\
+\left\langle\boldsymbol{\eta}^{+}(x) \boldsymbol{\eta}(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)
\end{gathered}
$$

4) Compare poles on both sides

What about the vector?

What about the vector?

1) Formulate gauge-invariant operator 1 singlet

What about the vector?

1) Formulate gauge-invariant operator 1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$

What about the vector?

1) Formulate gauge-invariant operator 1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

What about the vector?

1) Formulate gauge-invariant operator 1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(h^{+} D_{u} h\right)(x)\left(h^{+} D_{u} h\right)(y)\right\rangle=v^{2} c^{a b}\left\langle W_{u}^{a}(x) W^{b}(y)^{u}\right\rangle+\ldots
$$

What about the vector?

1) Formulate gauge-invariant operator 1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{u}\right\rangle+\ldots
$$

Matrix from group structure

What about the vector?

1) Formulate gauge-invariant operator

1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{aligned}
\left\langle(h ^ { + } D _ { \mu } h) (x) \left(h^{+}\right.\right. & \left.\left.D_{u} h\right)(y)\right\rangle=v^{2} c^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y){ }^{u}\right\rangle+\ldots \\
& =v^{2}\left\langle W_{u}^{8} W_{\mu}^{8}\right\rangle+\ldots
\end{aligned}
$$

Matrix from group structure
$c^{a b}$ projects out only one field

What about the vector?

1) Formulate gauge-invariant operator

1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{aligned}
\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{\mu}\right\rangle+\ldots \\
=v^{2}\left\langle W_{\mu}^{8} W_{\mu}^{8}\right\rangle+\ldots
\end{aligned} \begin{aligned}
& \text { Matrix from } \\
& \text { group structure }
\end{aligned}
$$

$c^{a b}$ projects out only one field

Only one state remains in the spectrum at mass of gauge boson 8 (heavy singlet)

What about the vector?

1) Formulate gauge-invariant operator

1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{\mu}\right\rangle+\ldots
$$

$c^{a b}$ projects out Only one state remains in the spectrum only one field at mass of gauge boson 8 (heavy singlet)

Charged states need additional assumptions

- Qualitatively different spectrum
- Gauge-dependent particles can also be calculated

Spectrum

Spectrum for SU(3)+fundamental Higgs

- Full spectroscopy will check further FMS predictions
- Results so far show no additional light levels
- $U(1)$ charged: Do not exist in perturbation theory

Experimental consequences

Experimental consequences

- Add fundamental fermions

Experimental consequences

- Add fundamental fermions
- Bhabha scattering

Experimental consequences

- Add fundamental fermions
- Bhabha scattering
- Physical
- Perturbative

Experimental consequences

- Physical
- Perturbative

Physical scattering thresholds
Physical resonance

- Add fundamental fermions
- Bhabha scattering

Experimental consequences

Ghost peaks from unphysical particles in perturbation theory

- Add fundamental fermions
- Bhabha scattering
- Physical
- Perturbative

Experimental consequences

Close to true structures identical!

- Add fundamental fermions
- Bhabha scattering
- Physical
- Perturbative

Beyond the toy model

- Generic problem in GUT scenarios ${ }_{\text {[sonemenememeri9] }}$
- Many standard scenarios are ruled out
- Too few or too many particles at low mass
- Includes popular scenarios like $\operatorname{SU}(5), \mathrm{SO}(10)$, PatiSalam

Beyond the toy model

- Generic problem in GUT scenarios
[Sondenheimer'19]
- Many standard scenarios are ruled out
- Too few or too many particles at low mass
- Includes popular scenarios like SU(5), SO(10), PatiSalam
- Group-theoretic arguments
- Traced back to the structure of global symmetry and local gauge group
- Standard model has a special structure - protects the spectrum [Frohich etal: 80,81$]$

Beyond the toy model

- Generic problem in GUT scenarios
[Sondenheimer'19]
- Many standard scenarios are ruled out
- Too few or too many particles at low mass
- Includes popular scenarios like SU(5), SO(10), PatiSalam
- Group-theoretic arguments
- Traced back to the structure of global symmetry and local gauge group
- Standard model has a special structure - protects the spectrum [FFohich etal:80,881]
- Requires to rebuild GUT phenomenology
- Photon as composites possible ${ }_{\text {affererante e tal:20] }}$

Summary

- Perturbative methods to determine GUT spectra fail qualitatively
- Fröhlich-Morchio-Strocchi mechanism yields a suitable, practical alternative
- Phenomenlogy of GUTs needs to be redone

