OBSERVATION OF ODDERON

SCALING PROPERTIES OF ELASTIC SCATTERING

T. Csörgő^{1,2}, T. Novák², R. Pasechnik³, A. Ster¹ and I. Szanyi^{1,4}

¹ Wigner RCP, Budapest, Hungary
 ² MATE KRC, Gyöngyös, Hungary
 ³ University of Lund, Lund, Sweden
 ⁴ Eötvös University, Budapest, Hungary

Intro to elastic scattering Motivation: Odderon H(x) scaling at TeV Model independent results: Significance at least 6.26 o Model dependent results: Significance at least 7.08 o Domain of validity Conclusions Appendix

Mandelstam variables

$$egin{aligned} s &= (p_1 + p_2)^2 = (p_3 + p_4)^2 \ t &= (p_1 - p_3)^2 = (p_4 - p_2)^2 \ u &= (p_1 - p_4)^2 = (p_3 - p_2)^2 \end{aligned}$$

p₁,p₂: four-momenta before elastic scattering

p₃,p₄: four-momenta after elastic scattering s: square of the cms energy t: square of four-momentum transfer

2

Odderon and quantum chromodynamics

Pomeron (2+4+...) gluon in pp: (RGB)+(RGB) \rightarrow (GRB)+(GRB)

Odderon (3+5+... gluon) in pp: (RGB)+(RGB) → (GBR)+(GBR) Well established in QCD

Odderon and elastic collisions

Formalism: elastic scattering

$$\sigma_{el}(s) = \int_0^\infty d|t| \frac{d\sigma(s)}{dt}$$

$$\frac{d\sigma(s)}{dt} = \frac{1}{4\pi} |T_{el}(s,\Delta)|^2, \qquad \Delta = \sqrt{|t|}.$$

$$B(s,t) = \frac{d}{dt} \ln \frac{d\sigma(s)}{dt}$$

$$B(s) \equiv B_0(s) = \lim_{t \to 0} B(s, t),$$

$$\sigma_{\rm tot}(s) \equiv 2 \,{\rm Im}\, T_{el}(\Delta=0,s)$$

$$\rho(s,t) \equiv \frac{\operatorname{Re} T_{el}(s,\Delta)}{\operatorname{Im} T_{el}(s,\Delta)}$$

$$\rho(s) \equiv \rho_0(s) = \lim_{t \to 0} \rho(s, t)$$

Basic problem: $d\sigma/dt$ measures an amplitude, *modulus squared*. How to achieve amplitude level reconstruction? Phase info lost...

Formalism in b space

$$\frac{d\sigma(s)}{dt} = \frac{1}{4\pi} |T_{el}(s,\Delta)|^2, \qquad \Delta = \sqrt{|t|}.$$

$$t_{\rm el}(s,b) = \int \frac{d^2 \Delta}{(2\pi)^2} e^{-i\Delta b} T_{\rm el}(s,\Delta) =$$
$$= \frac{1}{2\pi} \int J_0(\Delta b) T_{\rm el}(s,\Delta) \Delta d\Delta ,$$
$$\Delta \equiv |\Delta|, \quad b \equiv |b|.$$

$$t_{\rm el}(s,b) = i \left[1 - e^{-\Omega(s,b)} \right]$$

$$P(s,b) = 1 - \left| e^{-\Omega(s,b)} \right|^2$$

Impact parameter or b space: elastic scattering *interferes with no collisions*. Complex opacity function Ω(s,b) (eikonal, from unitarity) P(s,b): shadow profile function = probability of inelastic scattering

Looking for Crossing-Odd(eron) effects

$$T_{\rm el}^{pp}(s,t) = T_{\rm el}^{+}(s,t) - T_{\rm el}^{-}(s,t),$$

$$T_{\rm el}^{p\overline{p}}(s,t) = T_{\rm el}^{+}(s,t) + T_{\rm el}^{-}(s,t),$$

$$T_{\rm el}^{+}(s,t) = T_{\rm el}^{P}(s,t) + T_{\rm el}^{f}(s,t),$$

$$T_{\rm el}^{-}(s,t) = T_{\rm el}^{O}(s,t) + T_{\rm el}^{\varpi}(s,t).$$

$$T_{\rm el}^P(s,t) = \frac{1}{2} \left(T_{\rm el}^{pp}(s,t) + T_{\rm el}^{p\overline{p}}(s,t) \right)$$
$$T_{\rm el}^O(s,t) = \frac{1}{2} \left(T_{\rm el}^{p\overline{p}}(s,t) - T_{\rm el}^{pp}(s,t) \right)$$

for $\sqrt{s} \ge 1$ TeV,

7

Three simple consequences:

$$\begin{split} T^O_{el}(s,t) &= 0 \implies \frac{d\sigma^{pp}}{dt} = \frac{d\sigma^{p\bar{p}}}{dt} \quad \text{for } \sqrt{s} \ge 1 \text{ TeV} \\ \frac{d\sigma^{pp}}{dt} &= \frac{d\sigma^{p\bar{p}}}{dt} \quad \text{for } \sqrt{s} \ge 1 \text{ TeV} \implies T^O_{el}(s,t) = 0. \\ \frac{d\sigma^{pp}}{dt} &\neq \frac{d\sigma^{p\bar{p}}}{dt} \quad \text{for } \sqrt{s} \ge 1 \text{ TeV} \implies T^O_{el}(s,t) \neq 0 \end{split}$$

Odderon differential cross-section from pp and ppbar collisions, Reggeized Philips-Barger: A. Ster, L. Jenkovszky, T. Cs., **arxiv:1501.03860**, *Phys.Rev.D* **91** (2015) 7, 074018

Odderon search: a possible strategy

Odderon: L. Lukaszuk, B. Nicolescu, Lett. Nuovo Cim. 8, 405 (1973)

Known trivial s-dependences in $\sigma_{tot}(s), \sigma_{el}(s), B(s), \rho(s)$

Try to scale this out Data collapsing (scaling)

Look for scaling violations

In the TeV energy range: Odderon is equivalent with a crossing-odd component Look for violations of C-symmetry

Scaling in the diffractive cone region

$$\frac{d\sigma}{dt} = A(s) \exp\left[B(s)t\right]$$

$$A(s) = B(s) \,\sigma_{\rm el}(s) = \frac{1 + \rho_0^2(s)}{16 \,\pi} \,\sigma_{\rm tot}^2(s),$$

$$\frac{1}{B(s)\sigma_{\rm el}(s)}\frac{d\sigma}{dt} = \exp\left[tB(s)\right]$$

$$H(x) \equiv \frac{1}{B(s)\sigma_{\rm el}(s)} \frac{d\sigma}{dt},$$
$$x = -tB(s).$$

Advantages: H(x) = exp(-x) in the cone Measurable both for pp and p-antip

Test of the H(x) scaling at ISR

Works better than expected, even in the bump/tail region!

H(x) scaling in greater x region

 $t_{el}(s, \mathbf{b}) = (i + \rho_0) r(s) E(\tilde{\mathbf{x}}).$

Re exp
$$[-\Omega(s, b)] = 1 - r(s)E(\tilde{\mathbf{x}}),$$

Im exp $[-\Omega(s, b)] = \rho_0 r(s)E(\tilde{\mathbf{x}}),$
 $\tilde{\mathbf{x}} = \mathbf{b}/R(s),$
 $R(s) = \sqrt{B(s)},$

$$\frac{d\sigma}{dt} = \frac{1}{4\pi} |T_{el}(\Delta)|^2 = \frac{1+\rho_0^2}{4\pi} r^2(s) R^2(s) |\tilde{E}(R(s)\Delta)|^2$$

$$A = \left. \frac{d\sigma}{dt} \right|_{t=0} = \frac{1+\rho_0^2}{4\pi} r^2(s) R^2(s) |\tilde{E}(0)|^2,$$

$$\frac{1}{A}\frac{d\sigma}{dt} = \frac{|\tilde{E}(\sqrt{x})|^2}{|\tilde{E}(x=0)|^2} = H(x),$$

Advantages: $H(x) \neq exp(-x)$ arbitrary positive def. in the dip-bump region Measurable both for pp and p-antip. Normalized as H(0) = 1.

Test of the H(x) scaling with TOTEM@LHC

$$H(x) \equiv \frac{1}{B(s)\sigma_{\rm el}(s)} \frac{d\sigma}{dt},$$
$$x = -tB(s).$$

12

Between 2.76 and 7 TeV, even with stat errors only, valid in the bump/tail region! Between 7 and 13 TeV, scaling limited to the cone, but scaling violated beyond stat+syst errors in dip/dump/tail region!

Odderon discovery model-independently

Evidence of Odderon-exchange from scaling properties of elastic scattering at TeV energies #1	
T. Csörgő (Wigner RCP, Budapest and CERN), <u>T. Novak</u> (Unlisted, HU), R. Pasechnik (Lund U., Dept. Theor. Phys.), <u>A. Ster</u> (Wigner RCP, Budapest), <u>J. Szanyi</u> (Wigner RCP, Budapest) (Dec 26, 2019)	
Published in: Eur. Phys. J. C 81 (2021) 2, 180 Eur. Phys. J. C (2021) 81: 180	
DOI □ cite <u>https://doi.org/10.1140/epjc/s10052-021-08867-6</u> 13 citations	
Observation of Odderon Effects at LHC energies A Real Extended Bialas-Bzdak Model Study #2	
T. Csorgo (Wigner RCP, Budapest and EKU KRC, Gyongyos), <u>I. Szanyi</u> (Eotvos U. and Wigner RCP, Budapest) (May 28, 2020) e-Print: 2005.14319 [hep-ph]	
A pdf → cite	
Scaling of high-energy elastic scattering and the observation of Odderon #3	
T. Csörgő (Wigner RCP, Budapest and Eszterhazy Karoly U., Eger), <u>T. Novák</u> (EKU KRC, Gyongyos), R. Pasechnik (Lund U., Dept. Theor. Phys.), <u>A. Ster</u> (Wigner RCP, Budapest), <u>I. Szanyi</u> (Wigner RCP, Budapest and Eotvos U.) (Apr 15, 2020) e-Print: 2004.07318 [hep-ph]	
Proton Holography Discovering Odderon from Scaling T. Csorgo (Wigner RCP, Budapest and Eszterhazy Karoly U., Eger), <u>T. Novak</u> Nucl. Phys. Inst.) A. Ster (Wigner RCP, Budapest) I. Szapvi (Wigner RCP, Bu)5 2 <u>3506002</u>
Published in: EPJ Web Conf. 235 (2020) 06002 • Contribution to: ISMD 2019 • e-Print: 2004.07095 [hep-ph]	
DOI ☐ cite	13
anor publiched in EDI C. 2 manuscripts submitted for a public	ation

1 paper published in EPJ C, 2 manuscripts submitted for a publication, +<u>1 refereed conference proceedigs</u> (ISMD 2019, Santa Fe, USA) so far

H(x) rebin: linear interpolations in x

Need for a comparison of different data sets measured at different values of x: Linear interpolation to the same x = -t B

Errors: both vertical AND horizontal, type A, B, C type A: point-to-point fluctuating error type B: point-to-point 100 % correlated error type C: point independent overall correlated error

14

Model independent results since ISMD'19

Fig. 13 Left panel indicates that as a function of $\varepsilon_{b,7 \text{ TeV}}$, the $\chi^2 \equiv \tilde{\chi}_{21}^2$ distribution has a unique minimum and nearly quadratic minimum. The minimum value is $\chi^2/\text{NDF} = 80.1/17$, corresponding to a statistically significant difference between the pp and $p\bar{p}H(x)$ scaling functions. at the level of 6.26 σ . The right panel shows the comparison of the H(x) data using the values of $\varepsilon_{b,7 \text{ TeV}}$ corresponding to such a minimum, both for the case of the $7 \rightarrow 1.96$ TeV and for the case of $1.96 \rightarrow 7$ TeV projections.

T. Cs, R. Pasechnik, T. Novák, A. Ster, I. Szanyi, Eur. Phys. J. C (2021) **81**: 180 https://doi.org/10.1140/epjc/s10052-021-08867-6, 1912.11968 [hep-ph]

Model independent results since ISMD'19

arXiv:2004.07318v2

Model independent Odderon significance 6.26 σ 11 pages, 2 figures, synthesis of data analysis and theory results

Model independent results since ISMD'19

arXiv:2004.07318v2

Model independent Odderon significance 6.26 σ 11 pages, 2 figures , synthesis of data analysis and theory results

Model dependent evidence for Odderon

82 pages, 31 figures, model dependent theory results, Odderon significance \geq 7.08 σ , see e-Print: <u>2005.14319</u> [hep-ph]

Model independent result

Energy range: tested both model independently and with modelling. Modelling is useful, but model independent tests more important!

Asymmetry parameter for C-violation

$$A(x|p\bar{p}, s_1|pp, s_2) = \frac{H(x|p\bar{p}, s_1) - H(x|pp, s_2)}{H(x|p\bar{p}, s_1) + H(x|pp, s_2)},$$

$$A(x|pp, s_1|pp, s_2) = \frac{H(x|pp, s_1) - H(x|pp, s_2)}{H(x|pp, s_1) + H(x|pp, s_2)}.$$

A(x|pbarp,s₁|pp,s₂) does NOT vanish for a C-symmetry violation AND

> A(x|pp,s₁|pp,s₂) vanishes if H(x) scaling valid

Energy range: HAS to be tested

Main result of A

Scaling violations: under theoretical control: Model calculations by solid line, see e-Print: 2005.14319 [hep-ph]

OBSERVATION OF ODDERON

-Bt

SLIDING WINDOW for 5 σ

Is H(x,s) = H(x) at 1.96 TeV?

MODEL INDEPENDENTLY: In the background of the Odderon signal, defined as $x \le 7.0 \cup x > 13.5$ **H(x|pp,7 TeV) ~ H(x|pbarp, 1.96 TeV)** within a significance of 2.39 σ

Results for the background: $x \le 7.0$ in union with $x > 13.5$				
for $\epsilon_{B21}(7 \text{ TeV}) = -1.1$ that minimizes signal in the background				
x _{max}	ε _{B21} of min[χ²(background)]	$\Delta \chi^2$ (background)	NDF(background)	σ (background)
20.2	-1.10	20.20	9	2.39

Is H(x,s) = H(x) at 1.96 TeV?

MODEL DEPENDENT answer: 1.96 TeV Highest energy where p+antip data are available

H(x) scaling limit: in the Bialas-Bzdak model

Fits pbarp data up to largest -t (red line, dashed line: pp)

> Pull plots: (data-fit)/error (data-fit)/fit

t_{max}(1.96 TeV, pp) > 1.2 GeV²

→ x_{max}(1.96 TeV, pp) > 20

SUMMARY: AT LEAST 6.26 σ ODDERON

An at least 6.26 σ Odderon effect

A discovery level, **model independent** Odderon effect at TeV scale. Published: Eur. Phys. J. C **81**, 180 (2021). <u>https://doi.org/10.1140/epjc/s10052-021-08867-6</u> Domain of validity of H(x) scaling: full x =-tB range of D0 at 1.96 TeV, model INDEPENDENTLY ! Model dependent results, using the ReBB model Significance ≥ 7.08 σ, see e-Print: 2005.14319 [hep-ph]

OBSERVATION OF ODDERON

2020 → **2020**

THANK YOU FOR YOUR ATTENTION

Recent results from D0/TOTEM

including our contributions

APPENDIX: D0/TOTEM Fig. 2 OK

Fig. 2 of <u>arxiv:2012.03981</u>: Fits ISR and LHC data with <u>same</u> curve

R(pp) = 1.77 ± 0.01 @ 1.96 TeV

Reggeon effects from ISR? Test this!

Our cross-test of Fig. 2 of <u>arxiv:2012.03981</u>: Fits ISR and LHC data with <u>separate</u> lines $p_1^{LHC} = 0.034 \pm 0.050$ Consistent with 0 \rightarrow fix it to 0!

R(pp) = 1.77 ± 0.01 @ 1.96 TeV

→ Reggeon effects negiligble @ 1.96 TeV, OK.

APPENDIX: D0/TOTEM FIG. 3 OK

Our cross-test of Fig. 3 of <u>arxiv:2012.03981</u>: Fits to max(s) and min(s) neglect the constraint of Fig. 2:

R(s|pp) = max(s|pp)/min(s|pp)

measured to be 1.77 ±0.01 !

What about constrained fits?

Only two out of three quantities can be fitted independently : max(s), min(s) and R(s) = max(s) / min(s) Red lines: min(s|pp) = max(s|pp)/R(s|pp) <u>constrained fits</u>

 \rightarrow Fig. 3. of D0/TOTEM OK within 1 σ

CROSS-CHECK OF D0/TOTEM FIG. 5

Empty circles from min(s|pp) = max(s|pp)/R(s|pp) constrained fits

 \rightarrow Fig. 5. of D0/TOTEM OK within 1 σ

D0/TOTEM FIRMS UP OUR RESULTS

If we conservatively optimize coefficient $\epsilon_{B,7TeV}$ of point-to-point correlated errors: **2.79** σ **Significance of D0/TOTEM** for d σ /dt: **3.4** σ If we study $d\sigma/dt$ and limit **our analysis to the same range as D0/TOTEM:** Significance reduces to **5.01** σ **effect**, due to leaving out 9 D0 points

If we add D0's 14.4 % overall correlated error to fluctuating errors, for all D0 data: Our *published* value is **3.27** σ

BACKUP SLIDES

H(x) scaling for p antip scattering

Energy range: 546 GeV – 1.96 TeV

Qualitatively different from pp: scaling in the cone only for p+antip

pp: model dependent limit on H(x)

Energy range: 200 GeV – 8 TeV (nearly factor of 40) With decreasing s, the x = -Bt range for H(x) scaling decreases

Where is the Odderon signal from?

Swing, interference, tail regions Interference region is dominant

Partial significances from the swing, interference, tail and a	all regions,
--	--------------

characterized by $x_{min} < x \leq x_{max}$

X _{min}	X _{max}	ϵ_{B21} of min $\Delta\chi^2$	$\Delta \chi^2$ in	NDF in	σ in
		in $x_{min} < x \le x_{max}$	$x_{min} < x \le x_{max}$	$x_{min} < x \leq x_{max}$	$x_{min} < x \le x_{max}$
5.1	8.4	1.90	4.19	5	0.64
8.4	13.5	-0.49	25.31	5	3.84
13.5	20.2	-1.39	1.79	5	0.15
5.1	13.5	0.28	48.27	10	5.01
8.4	20.2	-0.96	35.79	10	3.91
5.1	20.2	-0.60	75.41	15	6.23

Model dependent evidence for Odderon

Structure: Introduction, **Fits with CL > 0.1 %** to published pp and pbarp data function In the dip/bump region (large –t fits) **Linear excitation function** in TeV range: $p_0 + p_1 \ln(s/s_0)$ **Sanity tests**: Validation of the trends **Extrapolations** both for pp and pbarp data **Odderon significance** from pp and pbarp comparisions From combined 1.96 and 2.76 TeV analysis: **Odderon seen at 7.08** σ **Cross-checks** (quadratic trend, ISR data)

82 pages, 31 figures, model dependent Odderon significance 7.1 σ , submitted for publication, see also talk by I. Szanyi @ Zimányi'2020

Safely above the 5 σ threshold

Role of the H(x) scaling violations Do they decrease the signal or not?

√s (TeV)	χ^2	NDF (ReBB)	σ (ReBB)
1.96	24.28	13	2.19
2.76	100.35	20	7.12
1.96 and 2.76	124.63	33	7.08

H(x) scaling: allows to project pp data ONLY Scaling violations decrease significance at 1.96 TeV BUT Also allow to evaluate pbarp data at 2.76 TeV

Trade-off effect!

Odderon significance increases From 6.26 to 7.08 σ .

OBSERVATION OF ODDERON

2020 → **2020**

Prediction for 510 GeV pp @ RHIC: scaling violations