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Outline
New, exact solutions of relativistic Navier-Stokes (NS) and Israel-Stewart (IS) theory

→ spherically symmetric Hubble-flow: great amount of freedom of dissipative coefficients

Asymptotically perfect fluid solutions

→ effects of dissipative coefficients in final state measurments?

Applications of the new, relativistic, dissipative solutions

→ indirect description of experimental data

→ producing new, non relativistic solutions

Asymptotic perfect fluid attractors of non relativistic, dissipative solutions
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I. New, relativistic, dissipative solutions



Relativistic hydrodynamics (Navier-Stokes)
Local conservation of the four momentum and the particle number:

The energy-momentum tensor is:

The heat current (with the heat conductivity λ):

The following terms describes the viscous effects:
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ζ: bulk viscosity
η: shear viscosity



Relativistic hydrodynamics (Israel-Stewart)
Local conservation of the four momentum and the particle number:

The energy-momentum tensor is:

The heat current (with the heat conductivity λ):

The following terms describes the viscous effects:
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ζ: bulk viscosity
η: shear viscosity



Relativistic hydrodynamics (Israel-Stewart)
Local conservation of the four momentum and the particle number:

The energy-momentum tensor is:

The heat current (with the heat conductivity λ):

The following terms describes the viscous effects:

2

To close the equation
system: 

EoS: ε=κp
In this work: κ=const.

ζ: bulk viscosity
η: shear viscosity



Hubble-type solutions: scale variable

Hubble-type velocity field:
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Scale equation:

Directional
scale variables:

Satisfy the scale
equation separately:



Hubble-type solutions: equations to solve
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Israel-Stewart theory

Continuity equation:

Energy conservation:

Bulk pressure:

Euler-equation:

Entropy equation:

Ansatz for bulk viscosity:

Navier-Stokes theory

Continuity equation:

Energy conservation:

Euler-equation:

Entropy equation:

Ansatz for bulk viscosity: 
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Hubble-type solutions: equations to solve
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Israel-Stewart theory

Continuity equation:

Energy conservation:

Bulk pressure:

Euler-equation:

Entropy equation:

Ansatz for bulk viscosity:

Navier-Stokes theory

Continuity equation:

Energy conservation:

Euler-equation:

Entropy equation:

Ansatz for bulk viscosity: 
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τΠ→ 0, or Π is constant

Heat conduction and shear viscosity cancelled!
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Analytic solutions of NS equations, with κ=const

The solution of the pressure is:

The temperature has a generalized form:
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Conserved charge, μ > 0 No conserved charge, μ = 0
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Analytic solutions of IS equations, with κ=const

Bulk pressure:

Pressure:

Constants:
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II. Asymptotically perfect fluid solutions



Asymptotically perfect fluid solutions
In the τ >> τ0 limit, both the NS and IS cases lead to the same asymptotic perfect fluid 
temperature profile and pressure:

If μ=0 the entropy density asymptotically equals to a perfect fluid form (and if μ≠0 the particle
density is unchanged):

The bulk viscosity is absorbed to the asymptotic normalization constants!

The effect of bulk viscosity is scaled out!
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Evolution of the temperature: same initial conditions
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Solutions of Navier-Stokes eqs. Solutions of Isreal-Stewart eqs.
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Evolution of the temperature: same initial conditions
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Solutions of Navier-Stokes eqs. Solutions of Isreal-Stewart eqs.
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Evolution of the temperature: same attractor
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Evolution of the temperature: same attractor
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Evolution of the temperature: same attractor
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Solutions of Navier-Stokes eqs. Solutions of Isreal-Stewart eqs.

In the τ >> τ0 limit, 
all cases approach
the perfect fluid 
asymptote

T. Csörgő, G. K.: 
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III. Applications



1st application of the solutions of NS eqs.
In arXiv:1405.3877: v2, v3 and v4 were reproduced for sNN

1/2 = 200 GeV Au+Au collisions with 
τf=7.7 fm/c and Tf=200 MeV final state parameters

We co-varied the initial conditions so that exactly the same freeze-out parameters are obtained
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Further applications of the solutions of NS eqs.
Producing new, dissipative solutions of non relativistic hydro

1st step: Non relativistic limit of the relativistic solution→ Spherically symmetric solution of non 
relativistic, dissipative hydro (manuscript is in preparation)

2nd step: Ellipsoidal generalization

3rd step: Add rotation to the velocity field→ v = vHubble + vrot

Result: Ellipsoidally symmetric, rotating, dissipative fireball solution of non relativistic hydro
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IV. New, non relativistic, dissipative solutions
- with perfect fluid attractors -



Spherically symmetric, dissipative fireball solution
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Velocity field
and self similarity:

Particle density, 
temperature and 
ideal gas approach:

Energy and momentum 
conservation:

Two possible solution of the energy conservation: 1. with homogeneous pressure: ν(s)τ(s)=1, CE=0, ζ=ζ(p)
2. with inhomogeneous pressure: ζ ~ p



Spherically symmetric, dissipative fireball solution
- with homogeneous pressure -

13

If the pressure is homogeneous, then ν(s)τ(s)=1, CE=0 so the Euler equation and ζ are:

With that, the energy conservation becomes:

If the bulk viscosity is linear in pressure:

Late time approximation:

perfect fluid asymptote

τ0 << τ



Spherically symmetric, dissipative fireball solution
- with inhomogeneous pressure -
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If the pressure is inhomogeneous, then ζ has to be linear in pressure:

Assumption:

With that, the energy conservation becomes:

The Euler equation is:
This set of differential equations is 
solved numerically (next slides)

The asymptotic attractor is a 
perfect fluid solution again!



Spherically symmetric, dissipative fireball solution
- with inhomogeneous pressure -
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Spherically symmetric, dissipative fireball solution
- with inhomogeneous pressure -
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Spherically symmetric, dissipative fireball solution
- with inhomogeneous pressure -
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Ellipsoidally symmetric, rotating, dissipative fireball solution

Velocity field: Scales of the fireball: X(t), Y(t), Z(t)
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Hubble-flow

Rotational term of velocity

Angular velocity
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Ellipsoidally symmetric, rotating, dissipative fireball solution

Velocity field:

Particle density and scale variable:

Temperature and energy conservation:

Euler equation and angular velocity:
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Further applications:
Ellipsoidally symmetric, rotating, dissipative fireball solution

Velocity field:

Particle density and scale variable:

Temperature and energy conservation:

Euler equation and angular velocity:
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effect of shear
with rotation

effect of shear
without rotation

effect of bulk



Summary
New, analytic, exact solutions of relativistic Navier-Stokes and Israel-Stewart equations with
spherically symmetric Hubble-flow

The effect of shear viscosity cancel because of the velocity field

The solutions are causal and asymptotically perfect (the effect of bulk viscosity cancels for late
times), both for a finite and vanishing μ

These exact solutions tend to the Csörgő-Csernai-Hama-Kodama perfect fluid solution

Cannot decide from final state measurements that the medium evolved as a perfect fluid with 
higher initial temperature (TA) or as a viscous fluid with lower initial temperature (T0)

We were able to reproduce the experimental data in sNN
1/2 = 200 GeV Au+Au collisions on v2, v3

and v4

Non relativistic limit: new solutions of non relativistic Navier-Stokes theory
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The end

Thank you for your attention!



Further application:
Asymptotic behaviour (for CE=0)
If CE=0, analytic solutions of X, Y and Z scales can be given, and their asymptotic limit are simple:

where

Backup

At very late times the constant offsets becomes negligible:

In this asymptotic limit, the rotating and dissipative, 
ellipsoidal fireball tends to a known, perfect fluid
relativistic solution:

A spherical and irrotational Hubble flow is an asymptotic attractor for rotating and ellipsoidal, finite fireballs

The effects of rotation, shear and bulk viscosity are scaled out from asymptotia
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