

New exact solutions of dissipative hydrodynamics

TAMÁS CSÖRGŐ, <u>GÁBOR KASZA</u> ACHT 2021, ONLINE CONFERENCE 22/04/2021

PARTIALLY SUPPORTED BY: NKFIH K-133046, FK-123842, FK-123959 EFOP 3.6.1-16-2016-00001 THOR, COST Action CA15213

arXiv:2003.08859

Outline

New, exact solutions of relativistic Navier-Stokes (NS) and Israel-Stewart (IS) theory

 \rightarrow spherically symmetric Hubble-flow: great amount of freedom of dissipative coefficients

Asymptotically perfect fluid solutions

 \rightarrow effects of dissipative coefficients in final state measurments?

Applications of the new, relativistic, dissipative solutions

- \rightarrow indirect description of experimental data
- \rightarrow producing new, non relativistic solutions

Asymptotic perfect fluid attractors of non relativistic, dissipative solutions

I. New, relativistic, dissipative solutions

Relativistic hydrodynamics (Navier-Stokes)

Local conservation of the four momentum and the particle number:

 $\partial_{\mu} \left(n u^{\mu} \right) = 0$ $\partial_{\mu} T^{\mu\nu} = 0$

The energy-momentum tensor is:

 $T^{\mu\nu} = (\varepsilon + p) u^{\mu} u^{\nu} - p g^{\mu\nu} + q^{\mu} u^{\nu} + q^{\nu} u^{\mu} + \pi^{\mu\nu} - \Delta^{\mu\nu} \Pi$

The heat current (with the heat conductivity λ):

$$q^{\mu} = \lambda \left(g^{\mu\nu} - u^{\mu}u^{\nu} \right) \left(\partial_{\nu}T - Tu^{\rho}\partial_{\rho}u_{\nu} \right)$$

The following terms describes the viscous effects:

$$\pi^{\mu\nu} = \eta \left[\Delta^{\mu\rho} \partial_{\rho} u^{\nu} + \Delta^{\nu\rho} \partial_{\rho} u^{\mu} \right] - \frac{2}{d} \eta \Delta^{\mu\nu} \partial_{\rho} u^{\rho} \qquad \qquad \Pi = -\zeta \partial_{\rho} u^{\rho}$$

ζ: bulk viscosityη: shear viscosity

Relativistic hydrodynamics (Israel-Stewart)

Local conservation of the four momentum and the particle number:

 $\partial_{\mu} \left(n u^{\mu} \right) = 0$ $\partial_{\mu} T^{\mu\nu} = 0$

The energy-momentum tensor is:

 $T^{\mu\nu} = (\varepsilon + p) u^{\mu} u^{\nu} - p g^{\mu\nu} + q^{\mu} u^{\nu} + q^{\nu} u^{\mu} + \pi^{\mu\nu} - \Delta^{\mu\nu} \Pi$

The heat current (with the heat conductivity λ):

$$q^{\mu} = \lambda \left(g^{\mu\nu} - u^{\mu}u^{\nu} \right) \left(\partial_{\nu}T - Tu^{\rho}\partial_{\rho}u_{\nu} \right)$$

ζ: bulk viscosity η: shear viscosity

The following terms describes the viscous effects:

$$\pi^{\mu\nu} = \eta \left[\Delta^{\mu\rho} \partial_{\rho} u^{\nu} + \Delta^{\nu\rho} \partial_{\rho} u^{\mu} \right] - \frac{2}{d} \eta \Delta^{\mu\nu} \partial_{\rho} u^{\rho} - \tau_{\pi} u_{\rho} \partial^{\rho} \pi^{\mu\nu} \qquad \Pi = -\zeta \partial_{\rho} u^{\rho} - \tau_{\Pi} u_{\rho} \partial^{\rho} \Pi$$

Relativistic hydrodynamics (Israel-Stewart)

Local conservation of the four momentum and the particle number:

$$\partial_{\mu} \left(n u^{\mu} \right) = 0$$
$$\partial_{\mu} T^{\mu\nu} = 0$$

The energy-momentum tensor is:

 $T^{\mu\nu} = (\varepsilon + p) u^{\mu} u^{\nu} - p g^{\mu\nu} + q^{\mu} u^{\nu} + q^{\nu} u^{\mu} + \pi^{\mu\nu} - \Delta^{\mu\nu} \Pi$

The heat current (with the heat conductivity λ):

$$q^{\mu} = \lambda \left(g^{\mu\nu} - u^{\mu}u^{\nu} \right) \left(\partial_{\nu}T - Tu^{\rho}\partial_{\rho}u_{\nu} \right)$$

The following terms describes the viscous effects:

$$\pi^{\mu\nu} = \eta \left[\Delta^{\mu\rho} \partial_{\rho} u^{\nu} + \Delta^{\nu\rho} \partial_{\rho} u^{\mu} \right] - \frac{2}{d} \eta \Delta^{\mu\nu} \partial_{\rho} u^{\rho} - \tau_{\pi} u_{\rho} \partial^{\rho} \pi^{\mu\nu}$$

To close the equation system: **EOS: \varepsilon = \kappa p** In this work: $\kappa = const.$

ζ: bulk viscosityη: shear viscosity

$$\Pi = -\zeta \partial_{\rho} u^{\rho} - \tau_{\Pi} u_{\rho} \partial^{\rho} \Pi$$

Hubble-type solutions: scale variable

Hubble-type velocity field: $u^{\mu} = \frac{x^{\mu}}{\tau} = \gamma \left(1, \frac{r_x}{t}, \frac{r_y}{t}, \frac{r_z}{t}\right)$

Scale equation: $u^{\mu}\partial_{\mu}s =$

$$u^{\mu}\partial_{\mu}s = 0$$

Directional scale variables:

$$s_x = \frac{r_x}{t}, \ s_y = \frac{r_y}{t}, \ s_z = \frac{r_z}{t}$$

Satisfy the scale equation separately: $u^{\mu}\partial_{\mu}$

$$u^{\mu}\partial_{\mu}s_i = \partial_{\tau}s_i = 0$$

Hubble-type solutions: equations to solve

Navier-Stokes theory

Continuity equation:
$$\partial_{\tau}n + \frac{d}{\tau}n = 0$$

Energy conservation
$$\partial_{\tau} p + \left(1 + \frac{1}{\kappa}\right) \frac{d}{\tau} p = \frac{d^2}{\tau^2}$$

Euler-equation:

 $p\tau - \zeta d = \phi(\tau)$

Entropy equation: $\partial_{\tau}\sigma + \frac{d}{\tau}\sigma = \frac{d^2}{\tau^2}\frac{\zeta}{T} \ge 0$

Ansatz for bulk viscosity: $\zeta = \zeta_0 \frac{p}{p_0}$

M. Nagy, M. Csanád, Z. Jiang, T. Csörgő: <u>arXiv:1909.02498</u> T. Csörgő, G. K.: <u>arXiv:2003.08859</u>

Israel-Stewart theory

Continuity equation: $\partial_{\tau}n + \frac{d}{\tau}n = 0$

Energy conservation: $\partial_{\tau} p + \left(1 + \frac{1}{\kappa}\right) \frac{d}{\tau} p = -\frac{d}{\tau} \frac{\Pi}{\kappa}$

Bulk pressure:

$$= -\zeta \frac{d}{\tau} - \tau_{\Pi} \dot{\Pi}$$

Euler-equation:

 $p + \Pi = \Psi(\tau)$

Π

Entropy equation:

$$\partial_{\tau}\sigma + \frac{d}{\tau}\sigma = -\frac{d}{\tau}\frac{\Pi}{T} \ge 0$$

Ansatz for bulk viscosity: $\zeta = \Pi \frac{\zeta_0}{\Pi_0}$

Hubble-type solutions: equations to solve

Israel-Stewart theory Navier-Stokes theory $\tau_{\Pi} \rightarrow 0$, or Π is constant Continuity equation: $\partial_{\tau}n + \frac{d}{\tau}n = 0$ Continuity equation: $\partial_{\tau} n + \frac{d}{\tau} n = 0$ Energy conservation: $\partial_{\tau} p + \left(1 + \frac{1}{\kappa}\right) \frac{d}{\tau} p = -\frac{d}{\tau} \frac{\Pi}{\kappa}$ Energy conservation $\partial_{\tau} p + \left(1 + \frac{1}{\kappa}\right) \frac{d}{\tau} p = \frac{d^2 \zeta}{\tau^2 \kappa}$ $\Pi = -\zeta \frac{d}{\tau} - \tau_{\Pi} \dot{\Pi}$ Euler-equation: $p\tau - \zeta d = \phi(\tau)$ Bulk pressure: Entropy equation: $\partial_{\tau}\sigma + \frac{d}{\sigma}\sigma = \frac{d^2}{\sigma^2}\frac{\zeta}{T} \ge 0$ Euler-equation: $p + \Pi = \Psi(\tau)$ Entropy equation: $\partial_{\tau}\sigma + \frac{d}{\tau}\sigma = -\frac{d}{\tau}\frac{\Pi}{\tau} \ge 0$ Ansatz for bulk viscosity: $\zeta = \zeta_0 \frac{p}{m}$ Ansatz for bulk viscosity: $\zeta = \Pi \frac{\zeta_0}{\pi}$ M. Nagy, M. Csanád, Z. Jiang, T. Csörgő: arXiv:1909.02498 T. Csörgő, G. K.: arXiv:2003.08859

Heat conduction and shear viscosity cancelled!

Hubble-type solutions: equations to solve

Navier-Stokes theory $\tau_{\Pi} \rightarrow 0$, or Π is constant	Israel-Stewart theory
Continuity equation: $\partial_{\tau}n + \frac{d}{\tau}n = 0$	Continuity equation: $\partial_{ au} n + rac{d}{ au} n = 0$
Energy conservation $\partial_{\tau}p + \left(1 + \frac{1}{\kappa}\right)\frac{d}{\tau}p = \frac{d^2}{\tau^2}\frac{\zeta}{\kappa}$	Energy conservation: $\partial_{ au} p + \left(1 + rac{1}{\kappa} ight) rac{d}{ au} p = -rac{d}{ au} rac{\Pi}{\kappa}$
Euler-equation: $p\tau - \zeta d = \phi(\tau)$	Bulk pressure: $\Pi = -\zeta rac{d}{ au} - au_\Pi \dot{\Pi}$
Entropy equation: $\partial_{\tau}\sigma + \frac{d}{\tau}\sigma = \frac{d^2}{\tau^2}\frac{\zeta}{T} \ge 0$	Euler-equation: $p + \Pi = \Psi(\tau)$
Ansatz for bulk viscosity: $\zeta = \zeta_0 rac{p}{p_0}$	Entropy equation: $\partial_{\tau}\sigma + \frac{d}{\tau}\sigma = -\frac{d}{\tau}\frac{\Pi}{T} \ge 0$
M. Nagy M. Gapád Z. Jiang T. Gaörgőt arViy/1000.02408	Ansatz for bulk viscosity: $\zeta = \Pi rac{\zeta_0}{\Pi_0}$
M. Nagy, M. Csanád, Z. Jiang, T. Csörgő: <u>arXiv:1909.02498</u> T. Csörgő, G. K.: <u>arXiv:2003.08859</u>	

Analytic solutions of NS equations, with k=const

The solution of the pressure is:
$$p(\tau) = p_0 \left(\frac{p_A}{p_0}\right)^{1-\frac{\tau_0}{\tau}} \left(\frac{\tau_0}{\tau}\right)^{d\left(1+\frac{1}{\kappa}\right)}, \quad \frac{p_A}{p_0} = f_{A,0} = \exp\left[\frac{d^2\zeta_0}{\kappa_0 p_0 \tau_0}\right]$$

The temperature has a generalized form:
$$T = T_0 \left(\frac{T_A}{T_0}\right)^{1-\frac{\tau_0}{\tau}} \left(\frac{\tau_0}{\tau}\right)^{\frac{d}{\kappa_0}} \mathcal{T}\left(s_x, s_y, s_z\right)$$
 T. Csörgő, G. K.:
arXiv:2003.08859

Conserved charge, $\mu > 0$ p = nT $\frac{T_A}{T_0} = \frac{p_A}{p_0} = f_{0,A} = \exp\left(\frac{\zeta_0 d^2}{\kappa_0 p_0 \tau_0}\right)$ $n = n_0 \left(\frac{\tau_0}{\tau}\right)^d \mathcal{V}\left(s_x, s_y, s_z\right)$

No conserved charge,
$$\mu = 0$$

$$p = \frac{T\sigma}{1+\kappa}$$

$$\frac{T_A}{T_0} = \left(\frac{\sigma_A}{\sigma_0}\right)^{\frac{1}{\kappa_0}} = \exp\left(\frac{\zeta_0 d^2}{\kappa_0 p_0 \tau_0} \frac{1}{1+\kappa_0}\right)$$

$$\sigma = \sigma_0 \left(\frac{\sigma_A}{\sigma_0}\right)^{1-\frac{\tau_0}{\tau}} \left(\frac{\tau_0}{\tau}\right)^d \mathcal{V}(s_x, s_y, s_z), \ \frac{\sigma_A}{\sigma_0} = f_{0,A}^{\frac{\kappa_0}{1+\kappa_0}} = \exp\left(\frac{\zeta_0 d^2}{p_0 \tau_0} \frac{1}{1+\kappa_0}\right)$$

G. K.:

Analytic solutions of NS equations, with κ=const

The solution of the pressure is:
$$p(\tau) = p_0 \left(\frac{p_A}{p_0}\right)^{1-\frac{\tau_0}{\tau}} \left(\frac{\tau_0}{\tau}\right)^{d\left(1+\frac{1}{\kappa}\right)}, \quad \frac{p_A}{p_0} = f_{A,0} = \exp\left[\frac{d^2\zeta_0}{\kappa_0 p_0 \tau_0}\right]$$

The temperature has a generalized form: T =

$$T_0 \left(\frac{T_A}{T_0}\right)^{1-\frac{\tau_0}{\tau}} \left(\frac{\tau_0}{\tau}\right)^{\frac{d}{\kappa_0}} \mathcal{T}\left(s_x, s_y, s_z\right)$$

T. Csörgő, G. K.: arXiv:2003.08859

$$\begin{aligned} \text{Conserved charge, } \mu > 0 \\ p = nT \\ \frac{T_A}{T_0} = \frac{p_A}{p_0} = f_{0,A} = \exp\left(\frac{\zeta_0 d^2}{\kappa_0 p_0 \tau_0}\right) \\ n = n_0 \left(\frac{\tau_0}{\tau}\right)^d \underbrace{\mathcal{V}(s_x, s_y, s_z)}_{\text{(x, s_y, s_z)}} \end{aligned}$$

$$\begin{aligned} \text{No conserved charge, } \mu = 0 \\ p = \frac{T\sigma}{1+\kappa} \\ \frac{T_A}{T_0} = \left(\frac{\sigma_A}{\sigma_0}\right)^{\frac{1}{\kappa_0}} = \exp\left(\frac{\zeta_0 d^2}{\kappa_0 p_0 \tau_0}\frac{1}{1+\kappa_0}\right) \\ \sigma = \sigma_0 \left(\frac{\sigma_A}{\sigma_0}\right)^{1-\frac{\tau_0}{\tau}} \left(\frac{\tau_0}{\tau}\right)^d \underbrace{\mathcal{V}(s_x, s_y, s_z)}_{\sigma_0} = f_{0,A}^{\frac{\kappa_0}{1+\kappa_0}} = \exp\left(\frac{\zeta_0 d^2}{p_0 \tau_0}\frac{1}{1+\kappa_0}\right) \end{aligned}$$

Analytic solutions of IS equations, with κ=const

Bulk pressure:
$$\Pi(\tau) = \Pi_0 \left(\frac{\tau_0}{\tau}\right)^{\frac{d}{\tau_\Pi} \frac{\zeta_0}{\Pi_0}} \exp\left(-\frac{\tau - \tau_0}{\tau_\Pi}\right)$$

Pressure:

$$p(\tau) = p_A \left(\frac{\tau_0}{\tau}\right)^{d\left(1+\frac{1}{\kappa}\right)} \left[1 + \frac{p_0 - p_A}{p_A} \cdot \frac{\Gamma\left(B, \frac{\tau}{\tau_{\Pi}}\right)}{\Gamma\left(B, \frac{\tau_0}{\tau_{\Pi}}\right)}\right]$$

Constants:

$$p_A = p_0 - \frac{\Pi_0 d}{\kappa} \left(\frac{\tau_0}{\tau_\Pi}\right)^{-B} \exp\left(\frac{\tau_0}{\tau_\Pi}\right) \Gamma\left(B, \frac{\tau_0}{\tau_\Pi}\right)$$
$$B = d\left(1 + \frac{1}{\kappa} - \frac{\zeta_0}{\Pi_0} \frac{1}{\tau_\Pi}\right)$$

M. Nagy, M. Csanád, Z. Jiang, T. Csörgő: arXiv:1909.02498

T. Csörgő, G. K.: arXiv:2003.08859

II. Asymptotically perfect fluid solutions

Asymptotically perfect fluid solutions

In the $\tau >> \tau_0$ limit, both the NS and IS cases lead to the same asymptotic perfect fluid temperature profile and pressure:

$$T \sim T_A \left(\frac{\tau_0}{\tau}\right)^{\frac{d}{\kappa_0}} \mathcal{T}\left(s_x, s_y, s_z\right) \qquad \qquad p \sim p_A \left(\frac{\tau_0}{\tau}\right)^{d\left(1 + \frac{1}{\kappa_0}\right)}$$

If μ =0 the entropy density asymptotically equals to a perfect fluid form (and if μ ≠0 the particle density is unchanged):

$$\sigma \sim \sigma_A \left(\frac{\tau_0}{\tau}\right)^d \mathcal{V}\left(s_x, s_y, s_z\right) \qquad \qquad \frac{T_A}{T_0} = \left(\frac{\sigma_A}{\sigma_0}\right)^{\frac{1}{\kappa_0}} = \exp\left(\frac{\zeta_0 d^2}{\kappa_0 p_0 \tau_0} \frac{1}{1+\kappa_0}\right)$$

The bulk viscosity is absorbed to the asymptotic normalization constants!

The effect of bulk viscosity is scaled out!

T. Csörgő, L. P. Csernai, Y. Hama, T. Kodama: arXiv:nucl-th/0306004

Asymptotically perfect fluid solutions

In the $\tau >> \tau_0$ limit, both the NS and IS cases lead to the same asymptotic perfect fluid temperature profile and pressure:

$$T \sim T_A \left(\frac{\tau_0}{\tau}\right)^{\frac{d}{\kappa_0}} \mathcal{T}\left(s_x, s_y, s_z\right) \qquad \qquad p \sim p_A \left(\frac{\tau_0}{\tau}\right)^{d\left(1 + \frac{1}{\kappa_0}\right)}$$

If μ =0 the entropy density asymptotically equals to a perfect fluid form (and if μ ≠0 the particle density is unchanged):

$$\sigma \sim \sigma_A \left(\frac{\tau_0}{\tau}\right)^d \mathcal{V}\left(s_x, s_y, s_z\right) \qquad \qquad \frac{T_A}{T_0} = \left(\frac{\sigma_A}{\sigma_0}\right)^{\frac{1}{\kappa_0}} = \exp\left(\frac{\zeta_0 d^2}{\kappa_0 p_0 \tau_0} \frac{1}{1+\kappa_0}\right)^{\frac{1}{\kappa_0}}$$

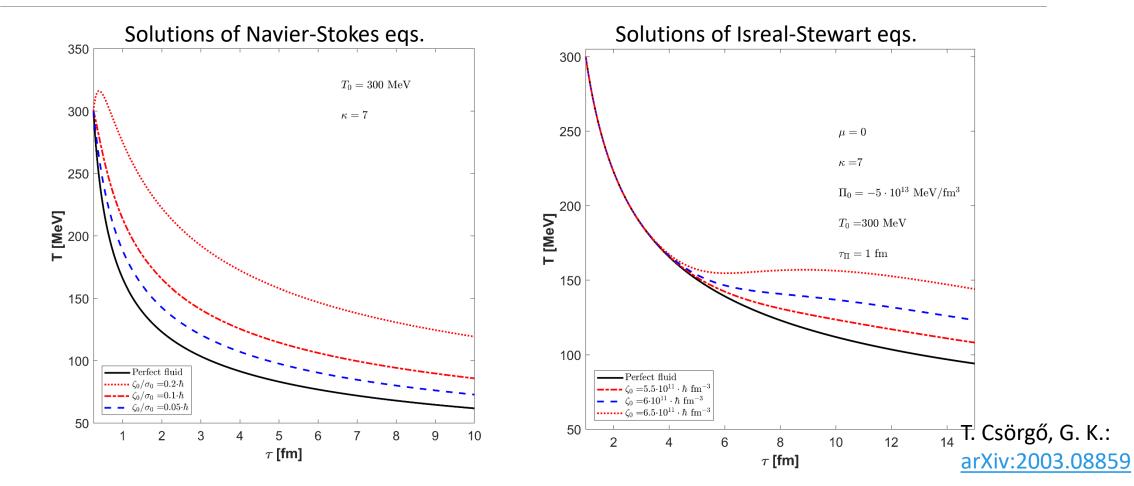
The bulk viscosity is absorbed to the asymptotic normalization constants!

The effect of bulk viscosity is scaled out!

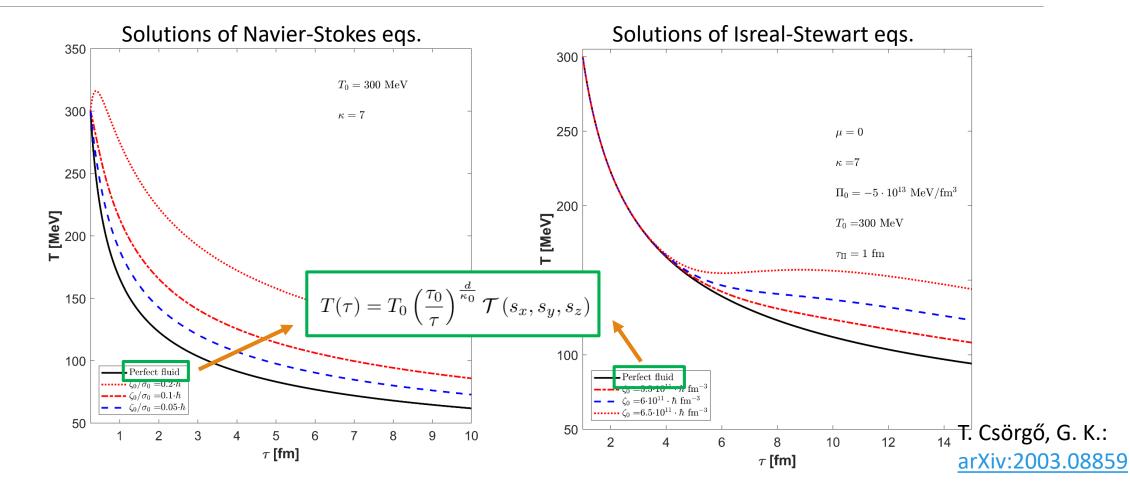
T. Csörgő, L. P. Csernai, Y. Hama, T. Kodama: arXiv:nucl-th/0306004

1

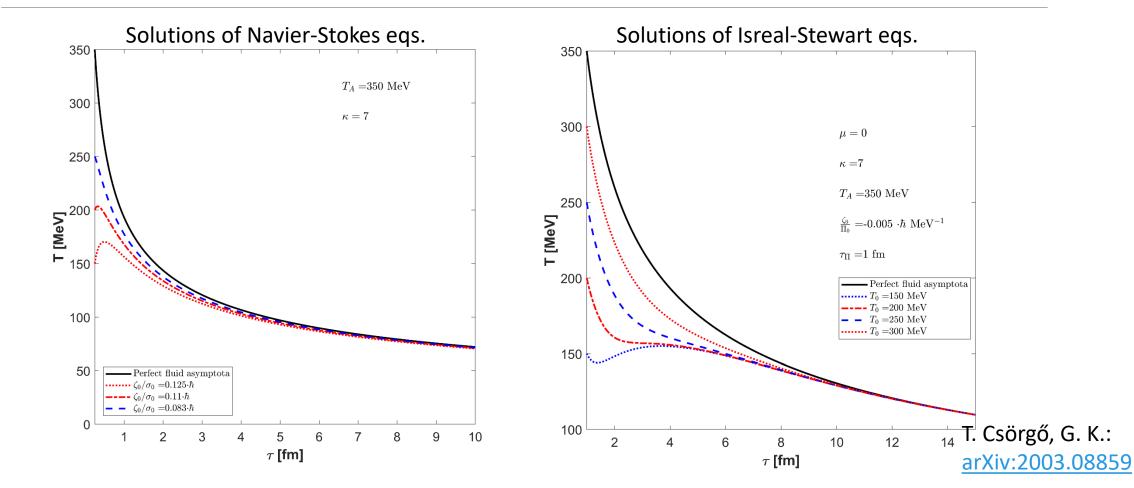
Evolution of the temperature: same initial conditions



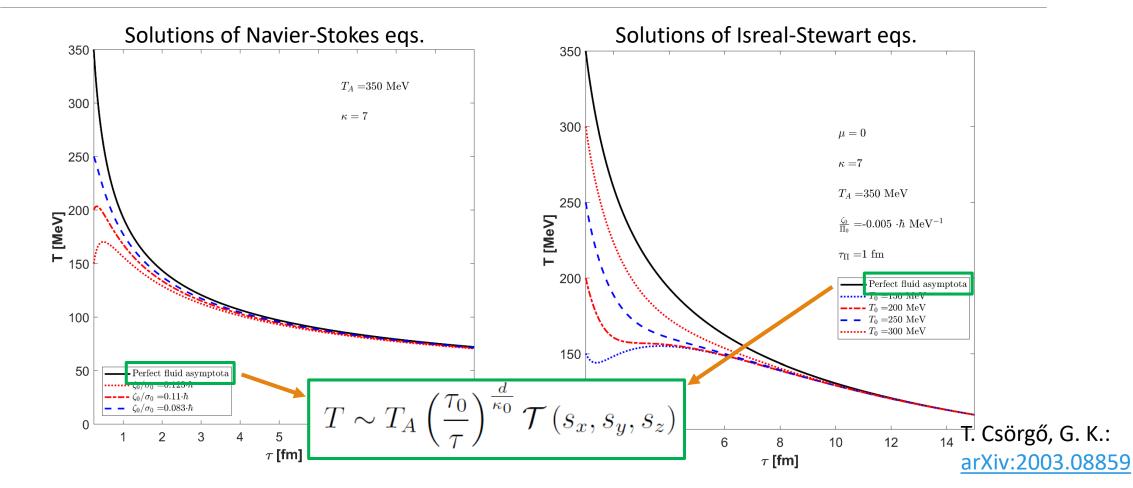
Evolution of the temperature: same initial conditions



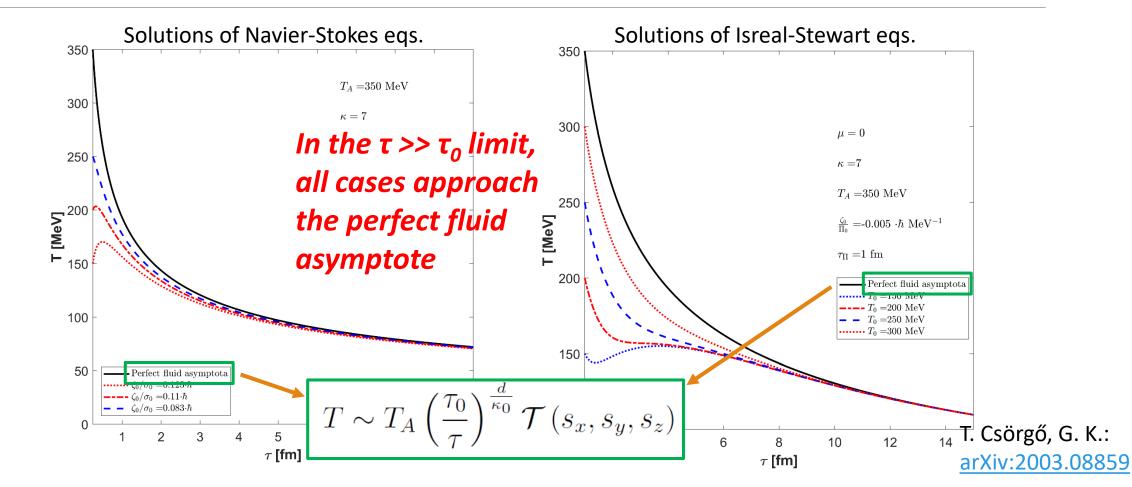
Evolution of the temperature: same attractor



Evolution of the temperature: same attractor



Evolution of the temperature: same attractor

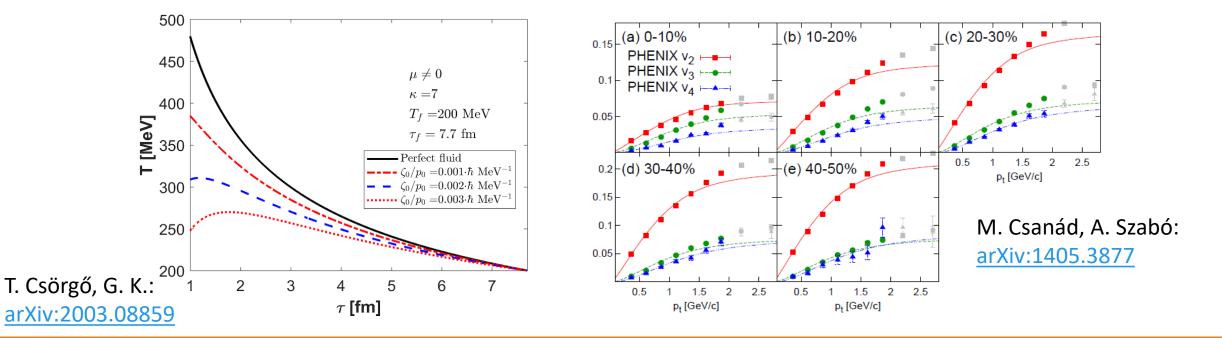


III. Applications

1st application of the solutions of NS eqs.

In <u>arXiv:1405.3877</u>: v_2 , v_3 and v_4 were reproduced for $s_{NN}^{1/2} = 200$ GeV Au+Au collisions with $\tau_f = 7.7$ fm/c and $T_f = 200$ MeV final state parameters

We co-varied the initial conditions so that exactly the same freeze-out parameters are obtained



Further applications of the solutions of NS eqs.

Producing new, dissipative solutions of non relativistic hydro

1st step: Non relativistic limit of the relativistic solution → *Spherically symmetric solution of non relativistic, dissipative hydro* (manuscript is in preparation)

2nd step: Ellipsoidal generalization

3rd step: Add rotation to the velocity field \rightarrow v = v_{Hubble} + v_{rot}

Result: *Ellipsoidally symmetric, rotating, dissipative fireball solution of non relativistic hydro*

IV. New, non relativistic, dissipative solutions - with perfect fluid attractors -

Spherically symmetric, dissipative fireball solution

 $\vec{v} = \frac{\dot{R}}{R}(r_x, r_y, r_z) \qquad \longrightarrow \qquad (\partial_t + \vec{v}\nabla)s = 0$ $s = \frac{r^2}{r^2}$ Velocity field and self similarity: $n(\vec{r},t) = n_0 \left(\frac{R_0}{R}\right)^d \mathcal{V}(s)$ $p(\vec{r},t) = p_0 f_T(t) \left(\frac{R_0}{R}\right)^d \mathcal{V}(s) \mathcal{T}(s)$ $T(\vec{r},t) = T_0 f_T(t) \mathcal{T}(s)$ Particle density, temperature and ideal gas approach: $\mathcal{V}(s) = \frac{1}{\mathcal{T}(s)} \exp\left(-\frac{C_E}{2} \int^s \frac{du}{\mathcal{T}(u)}\right)$ $\kappa \partial_t \ln(f_T) + d\frac{\dot{R}}{R} = \frac{\zeta d^2}{p} \left(\frac{\dot{R}}{R}\right)^2 \qquad R\ddot{R} = C_E \frac{T_0}{m} f_T(t)$ Energy and momentum conservation:

Two possible solution of the energy conservation:

with homogeneous pressure: v(s)τ(s)=1, C_E=0, ζ=ζ(p)
 with inhomogeneous pressure: ζ ~ p

If the pressure is homogeneous, then $v(s)\tau(s)=1$, $C_E=0$ so the Euler equation and ζ are:

$$\ddot{R} = 0 \longrightarrow \dot{R} = \text{const.} \longrightarrow R = \dot{R}t + R_0 \sim \dot{R}t$$

 $\zeta \equiv \zeta(p(t))$

With that, the energy conservation becomes:

Late time approximation: perfect fluid asymptote $T(t) \sim T_A \left(\frac{t_0}{t}\right)^{\frac{d}{\kappa}} \mathcal{T}(s)$ $p(t) \sim p_A \left(\frac{t_0}{t}\right)^{d\left(1+\frac{1}{\kappa}\right)}$ $T_A = T_0 \exp\left(\frac{d^2\zeta_0}{\kappa p_0 t_0}\right)$ $p_A = p_0 \exp\left(\frac{d^2\zeta_0}{\kappa p_0 t_0}\right)$

If the pressure is inhomogeneous, then ζ has to be linear in pressure: $\zeta(t,s) = \zeta_0 \frac{p(t,s)}{n_0}$

Assumption:

$$f_T(t) = g_T(t) \left(\frac{R_0}{R}\right)^{\frac{d}{\kappa}}$$

With that, the energy conservation becomes:

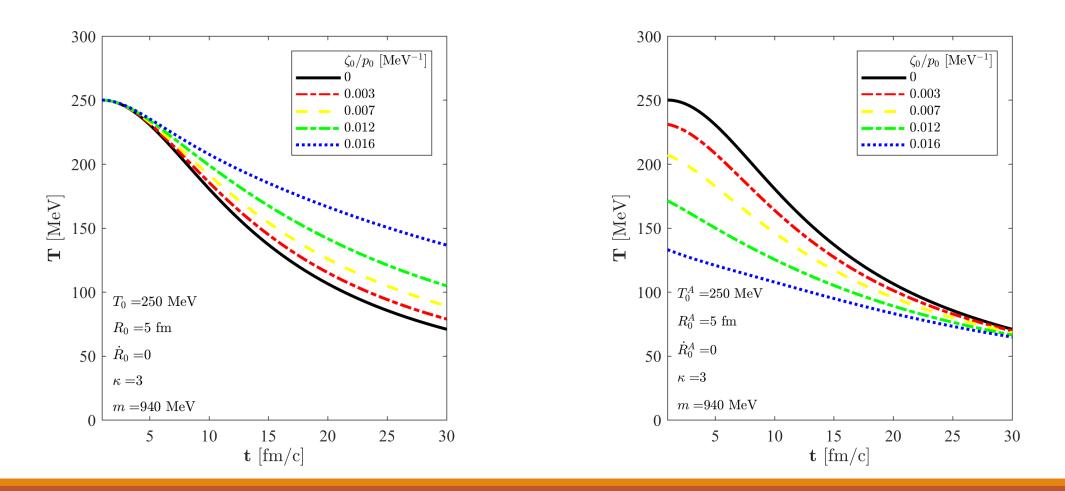
$$\frac{\dot{g_T}}{g_T} = \frac{\zeta_0 d^2}{\kappa p_0} \left(\frac{\dot{R}}{R}\right)^2$$

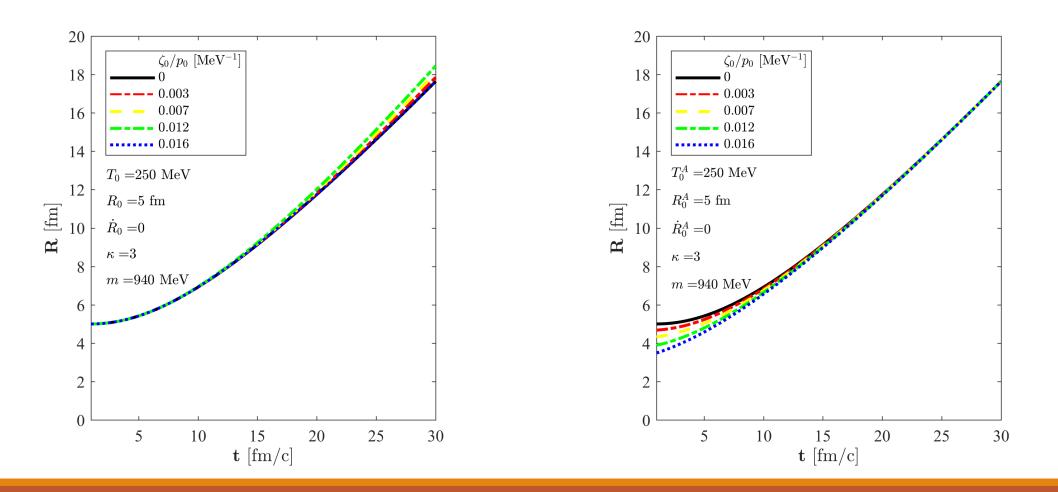
The Euler equation is:

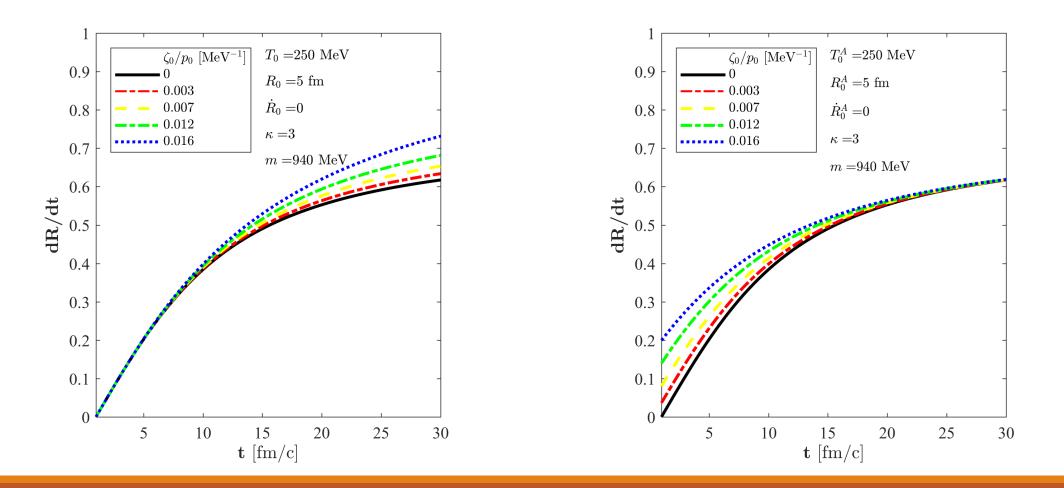
$$R\ddot{R} = C_E \frac{T_0}{m} \left(\frac{R_0}{R}\right)^{\frac{d}{\kappa}} g_T(t)$$

This set of differential equations is solved numerically (next slides)

The asymptotic attractor is a perfect fluid solution again!







Ellipsoidally symmetric, rotating, dissipative fireball solution

Velocity field: $\vec{v} = \vec{v}_H + \vec{v}_{rot}$ Scales of the fireball: X(t), Y(t), Z(t)

 $\mathbf{2}$

$$v_{H}(\vec{r},t) = \begin{pmatrix} \left(\frac{\dot{X}}{X}\cos^{2}\vartheta + \frac{\dot{Z}}{Z}\sin^{2}\vartheta\right)r_{x} \\ \frac{\dot{Y}}{Y}r_{y} \\ \left(\frac{\dot{X}}{X}\sin^{2}\vartheta + \frac{\dot{Z}}{Z}\cos^{2}\vartheta\right)r_{z} \end{pmatrix} + \left(\frac{\dot{Z}}{Z} - \frac{\dot{X}}{X}\right)\frac{\sin(2\vartheta)}{2} \begin{pmatrix} r_{z} \\ 0 \\ r_{x} \end{pmatrix} \longrightarrow \text{Hubble-flow}$$

$$v_{rot}(\vec{r},t) = \dot{\vartheta} \begin{pmatrix} r_{z} \\ 0 \\ -r_{x} \end{pmatrix} + \dot{\vartheta} \begin{pmatrix} \left(\frac{X}{Z}\cos^{2}\vartheta + \frac{Z}{X}\sin^{2}\vartheta\right)r_{z} \\ 0 \\ -\left(\frac{X}{Z}\sin^{2}\vartheta + \frac{Z}{X}\cos^{2}\vartheta\right)r_{x} \end{pmatrix} + \dot{\vartheta} \begin{pmatrix} \frac{X}{Z} - \frac{Z}{X} \end{pmatrix}\frac{\sin(2\vartheta)}{2} \begin{pmatrix} r_{x} \\ 0 \\ -r_{z} \end{pmatrix} \longrightarrow \text{Rotational term of velocity}$$

$$\dot{\vartheta} = \frac{\omega(t)}{2} = \frac{\omega_{0}}{2}\frac{R_{0}^{2}}{R(t)^{2}} \longrightarrow \text{Angular velocity}$$

$$R = \frac{X+Z}{2}$$

M. I. Nagy, T. Csörgő: <u>arXiv:1309.4390</u>
M. I. Nagy, T. Csörgő: <u>arXiv:1606.09160</u>
T. Csörgő, M. I. Nagy, I. F. Barna: <u>arXiv:1511.02593</u>

Ellipsoidally symmetric, rotating, dissipative fireball solution

Velocity field: $\vec{v} = \vec{v}_H + \vec{v}_{rot}$

Particle density and scale variable:

$$n(\vec{r},t) = n_0 \frac{X_0 Y_0 Z_0}{XYZ} \mathcal{V}(s) = n_0 \frac{V_0}{V} \mathcal{V}(s) \qquad s = \frac{r_x^2}{X^2} + \frac{r_y^2}{Y^2} + \frac{r_z^2}{Z^2} + \left(\frac{1}{Z^2} - \frac{1}{X^2}\right) \left[\left(r_x^2 - r_z^2\right) \sin^2\vartheta + r_x r_z \sin 2\vartheta\right]$$

Temperature and energy conservation:

$$T = T_0 \left(\frac{X_0 Y_0 Z_0}{X Y Z} \right)^{\frac{1}{\kappa}} g_T(t) \mathcal{T}(s), \qquad \mathcal{V}(s) = \frac{1}{\mathcal{T}(s)} \exp\left(-\frac{C_E}{2} \int_0^s \frac{du}{\mathcal{T}(u)} \right)$$
$$\kappa \partial_t [\ln(g_T)] = \frac{\zeta_0}{p_0} \left(\frac{\dot{X}}{X} + \frac{\dot{Y}}{Y} + \frac{\dot{Z}}{Z} \right)^2 + \frac{2\eta_0}{p_0} \left[\frac{\dot{X}^2}{X^2} + \frac{\dot{Y}^2}{Y^2} + \frac{\dot{Z}^2}{Z^2} - \frac{1}{3} \left(\frac{\dot{X}}{X} + \frac{\dot{Y}}{Y} + \frac{\dot{Z}}{Z} \right)^2 \right] + \frac{\eta_0 \omega_0^2}{4p_0} \frac{(X_0 + Z_0)^4}{(X + Z)^4} \left(\frac{X}{Z} - \frac{Z}{X} \right)^2$$

Euler equation and angular velocity:

$$X\left(\ddot{X} - R\omega^2\right) = Y\ddot{Y} = Z\left(\ddot{Z} - R\omega^2\right) = C_E \frac{T}{m}$$
$$R = \frac{X + Z}{2}, \qquad \omega = \omega_0 \frac{R_0^2}{R^2}$$

Further applications: Ellipsoidally symmetric, rotating, dissipative fireball solution

Velocity field: $\vec{v} = \vec{v}_H + \vec{v}_{rot}$

Particle density and scale variable:

$$n(\vec{r},t) = n_0 \frac{X_0 Y_0 Z_0}{XYZ} \mathcal{V}(s) = n_0 \frac{V_0}{V} \mathcal{V}(s) \qquad s = \frac{r_x^2}{X^2} + \frac{r_y^2}{Y^2} + \frac{r_z^2}{Z^2} + \left(\frac{1}{Z^2} - \frac{1}{X^2}\right) \left[\left(r_x^2 - r_z^2\right) \sin^2\vartheta + r_x r_z \sin 2\vartheta\right]$$

Temperature and energy conservation:

$$T = T_0 \left(\frac{X_0 Y_0 Z_0}{X Y Z}\right)^{\frac{1}{\kappa}} g_T(t) \mathcal{T}(s), \qquad \mathcal{V}(s) = \frac{1}{\mathcal{T}(s)} \exp\left(-\frac{C_E}{2} \int_0^s \frac{du}{\mathcal{T}(u)}\right)$$

$$\kappa \partial_t [\ln(g_T)] = \left[\frac{\zeta_0}{p_0} \left(\frac{\dot{X}}{X} + \frac{\dot{Y}}{Y} + \frac{\dot{Z}}{Z}\right)^2 + \frac{2\eta_0}{p_0} \left|\frac{\dot{X}^2}{X^2} + \frac{\dot{Y}^2}{Y^2} + \frac{\dot{Z}^2}{Z^2} - \frac{1}{3} \left(\frac{\dot{X}}{X} + \frac{\dot{Y}}{Y} + \frac{\dot{Z}}{Z}\right)^2\right] + \frac{\eta_0 \omega_0^2 (X_0 + Z_0)^4}{4p_0 (X + Z)^4} \left(\frac{X}{Z} - \frac{Z}{X}\right)^2\right]$$
effect of bulk effect of shear effect of shear effect of shear without rotation with rotation
$$X \left(\ddot{X} - R\omega^2\right) = Y\ddot{Y} = Z \left(\ddot{Z} - R\omega^2\right) = C_E \frac{T}{m}$$

$$R = \frac{X + Z}{2}, \qquad \omega = \omega_0 \frac{R_0^2}{R^2}$$

Summary

New, analytic, exact solutions of relativistic Navier-Stokes and Israel-Stewart equations with spherically symmetric Hubble-flow

The effect of shear viscosity cancel because of the velocity field

The solutions are causal and asymptotically perfect (the effect of bulk viscosity cancels for late times), both for a finite and vanishing μ

These exact solutions tend to the Csörgő-Csernai-Hama-Kodama perfect fluid solution

Cannot decide from final state measurements that the medium evolved as a perfect fluid with higher initial temperature (T_A) or as a viscous fluid with lower initial temperature (T_o)

We were able to reproduce the experimental data in $s_{NN}^{1/2}$ = 200 GeV Au+Au collisions on v_2 , v_3 and v_4

Non relativistic limit: new solutions of non relativistic Navier-Stokes theory

Thank you for your attention!

Further application: Asymptotic behaviour (for C_E=0)

If C_E=0, analytic solutions of X, Y and Z scales can be given, and their asymptotic limit are simple:

$$\begin{array}{l} X \propto X_{a} + \dot{X}_{a}t, \\ Y \propto Y_{a} + \dot{Y}_{a}t, \\ Z \propto Z_{a} + \dot{Z}_{a}t, \\ \omega \propto \omega_{0} \left[\frac{X_{0} + Z_{0}}{X_{a} + Z_{a} + \left(\dot{X}_{a} + \dot{Z}_{a}\right)t} \right]^{2} \end{array} \qquad \text{where} \qquad \begin{array}{l} \dot{X}_{a} = \frac{1}{2} \left[\dot{X}_{0} - \dot{Z}_{0} + \sqrt{(\dot{X}_{0} + \dot{Z}_{0})^{2} + (X_{0} + Z_{0})^{2} \omega_{0}^{2}} \right] \\ \dot{X}_{a} = \dot{Y}_{0} \\ \dot{Z}_{a} = \frac{1}{2} \left[\dot{Z}_{0} - \dot{X}_{0} + \sqrt{(\dot{X}_{0} + \dot{Z}_{0})^{2} + (X_{0} + Z_{0})^{2} \omega_{0}^{2}} \right] \end{array}$$

At very late times the constant offsets becomes negligible: $X~\propto~\dot{X}_a t$

In this asymptotic limit, the rotating and dissipative, ellipsoidal fireball tends to a known, perfect fluid relativistic solution: Csörgő, Csernai, Hama, Kodama: arXiv:nucl-th/0306004 $Y \propto \dot{Y}_a t$ $Z \propto \dot{Z}_a t$

A spherical and irrotational Hubble flow is an asymptotic attractor for rotating and ellipsoidal, finite fireballs

The effects of rotation, shear and bulk viscosity are scaled out from asymptotia