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EXTENDED LINEAR SIGMA MODEL




ELSM

Vector and axial vector meson Extended Polyakov Linear Sigma Model.
Phys. Rev. D 93, no. 11, 114014 (2016)

e Extended: Vector and Axial vector nonets (besides to Scalar and Pseudoscalar)
Isospin symmetric case: 16 mesonic degrees of freedom.
e Polyakov: Polyakov loop variables give 2 order parameters &, ®.

e Linear Sigma Model: "simple" quark-meson model
The mesonic Lagrangian L, build up from the fields

L= (VI 4+ A Ta, RM=D (VI —ANT., M= (Sa+iPa)Ta,
a a a
with terms up to fourth order, taking care of the symmetry properties.

e L, contains the dynamical, the symmetry breaking,
and the meson-meson interaction terms.



ELSM

e Constituent quarks (Ny = 2+ 1) in Yukawa Lagrangian

Ly =9 (iv"0u — gr(S —ivsP) — guvy" (Vi + v5Au)) ¥

In the latest (2016) version gy = 0 was used.
= No (axial) vector-fermion interaction was taken into account.

e SSB with nonzero vev. for scalar-isoscalar sector ¢y, ¢g.
= my,q =L dn, ms = 97%qu fermion masses in Ly.

_ 9%
T Opadey
« Tree level: S-V and P-A mixing in the quadratic part of the Lagrangian
= Shift in the A/V fields = The S/P masses get an extra factor m? — Z2m2.

« Fermionic one-loop correction: can be calculated from the fermionic determinant.

e Meson masses: Curvature masses Msb




ELSM

Thermodynamics: Mean field level effective potential:
e Classical potential.

e Fermionic one-loop correction with vanishing fluctuating mesonic fields.
Functional integration over the fermionic fields.

e Polyakov term.
QT 1g) = Ucy((M)) + Trlog (iSO_I) +U(®, D) (1)

Field equations (FE):
o o 0 00

9% 90 don  Ods

Mesonic one-loop corrections (7, K, fg): taken into account only in the pressure!

Parametrization of the model at T'= 0, p = 0 with ~ 30 physical quantities.



IMPROVEMENTS




ELSM IMPROVEMENTS

— Including (axial) vector-fermion interaction, i.e. setting gy # 0

Ly = ("0 — gr(S —ivs P) — gu v (Vi +v54AL)) (3)

From the fermionic one-loop self-energy corrections come to the (axial) vector masses.

— Including one-loop mesonic contribution into the effective potential via ring
resummation. (The fermion determinant expanded to 2nd order in the mesonic fields
and Gaussian integral performed.)

U(6) = Uer(é) + Uy (6, ¢ = 0)=5ir [ Tog (iDL, () =iy on(K)) (@)

iD™1(K) the tree-level inverse propagator and II(K) the fermionic one-loop SE,
and Uy (¢, ¢ = 0) =itrp [, log(iS™(K; 4p)|¢:0.
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It can be easily seen that the fermionic contribution to the curvature masses can be
obtained as the self-energy at vanishing external momentum II(K = 0).
= We need the self-energy!



ONE-LOOP FERMIONIC SELF-ENERGY

The expansion of the fermionic functional determinant in powers of some generic mesonic
field (in Ny =1)

Us(¢, @) =Trlog (iS; " — g)

=Trlog (iS; Z trD[H/d4$i o(2i)Sf (i, zit1) ,

= =1 Tn4+1=7T1

(5)

with iSf_l =id — my, inverse tree-level fermion propagator, and Tr is the functional trace.
In Nj=2+1:
Us(o, @) :i/ log Det ['yo(i'y“K” + 1diag(mu, mg, ms) — gr(LS*A® — iy5 P4A?)
K (6)
— vy (VEXT + ’Y5AZ>\Q))}

Second field derivative of Uy (¢, ) taken at vanishing mesonic fields gives the self-energy.



ONE-LOOP FERMIONIC SELF-ENERGY
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with iSf_l =id — my, inverse tree-level fermion propagator, and Tr is the functional trace.
In Ny =2+1:
Us(o, @) :i/ log Det ['yo(i'y“Ku + 1diag(mu, mg, ms) — gr(LS*A® — iy5 P4A?)
K (6)
— vy (VEXT + vsA,‘iA“))}

(Alternative for masses: brut force derivation of the determinant of a 12 x 12 matrix.)



(AXIAL) VECTOR SELF-ENERGY

Generally one has

Ao o

Hflf)(Q) = iNesxck /Ktr[l"x %S(K)F’X ?S(K — Q)] (7)

where the trace goes over flavor and Dirac space, too, S = diag (Su, S4,Ss), sz = £1 for
S, P and V, A while cx = —igs, —gs, —igv, —igv and I'x = 1,75, vu,vu7s for
X =S, P,V, A respectively.

v ) (£ mamy — K2 + K - Q)4+ 2KFKY — KHQY — QFKY
/(@) =izveg?, [ (& mams Q) ' -Q

(8)
(K2 —=m2)((K — Q)2 —mj)
e At T'= 0 only the vacuum self-energy contributes, that has to be renormalized
= Dimensional regularization
e At T # 0 the matter part (with statistical function) also gives contribution
A3k
= At finite temperature: Wick rotation, Matsubara frequencies, / — zTZ/ @n)?
K o T



PROJECTOR DECOMPOSITION OF IT4i-(Q)

Single reference vector at T' = 0: Q* = 4-longitudonal and 4-transversal projectors:

%%
Pl="g  Pri=gv-rt (9)
The vacuum contribution can be written up as
Hﬁ;C(Q) = HvaC,L(Q)P]le + Hvac,T(Q)Pqﬁw (10)

We need only the vanishing external momentum case.
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e For the vector self-energy containing two fermion propagators with the same mass in
the loop integral one can see that: Q,II*”(Q) = 0 and IT#¥(0) = 0 (as in QED)

Hvac,L/T(O) =0 (11)

Renormalization scheme that can reproduce this = Dimensional regularization

e For the axial vector self-energy and vector self-energy with two different fermion
propagators in the loop integral

Hvac,L(O) = 1_Iva.C,T(O) = H?/gc(o) = _H\II;C(O) 7£ 0 (12)




(PROJECTOR) DECOMPOSITION OF II*” AT T # 0

There is another reference vector: 4-velocity of the thermal bath u, (with u? = 1).
Lorentz covariant quantities: w = Q - u, p = Vw2 — Q2.

We use u# = (1,0), thus, w = g0, p =|q|.

New operators (uf, = ut — (Q - u)Q*/Q?):

PlW(Q) = u%gfyﬁ PtW =gh — pi“’ _ Pll“’7 CHY — M (13)
up (Q-u)? — Q2
Hence, Q)= > T (QPL +Tc(Q)CH.
z=I[,t,L
CH¥ is not a projector, e.g.:
C?=-P - Py, C.-P=P,-C,C-PL=PF-C (14)

M. Le Bellac, Thermal Field Theory, (1996)
Buchmuller, Helbig and Walliser, Nucl. Phys. B 407, 387-411 (1993)



(PROJECTOR) DECOMPOSITION OF II# AT T # 0

We need only the vanishing external momentum case.

To get the curvature mass one need lim lim in this order.
q—0gp—0

Lniget0,q) = 0

44
7%**(0,q) = oo (0,@), IF*(0,q) = *%H?}at(oyﬂﬂ, IE*(0,q) = — al

Thus, T/4/1,(0) = Tlvac(0) + ¢, (0)
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We need only the vanishing external momentum case.

To get the curvature mass one need lim lim in this order.
q—0gp—0

Lniget0,q) = 0

44
7%**(0,q) = oo (0,@), IF*(0,q) = *%H?}at(oyﬂﬂ, IE*(0,q) = — al

Thus, T1;/1/7,(0) = Tlyac(0) + TI2¢ ) (0)
e Vector SE with two fermion propagators with equal masses

3
pe*0) =0,  I"(0) =TIgH(0),  TIP**(0) = —EH’{}“(O) [ =0 for ELSM]

e Axial vector SE and vector SE with two different fermion propagators

I (0) = ~TPH0), TP (0) = T (0)



MODES FROM GAUSSIAN APPROXIMATION

Classical level mixing

g1, T cna L E& o
sLguad = —?ZKM [dijk(AéLPj — P Aj) + fiji(VFS; + SiVj“)]Gﬁm i,j,k=0,...,8
Specially for S — V' in the 4 — 5 sector

1, asna Lo ) - - i _
55 (K — R T 5 Vi (9 (K2 — ey — KKV — 5 Valess K" S+ S Sacas KV

The usual way to handle the mixing: shift the (axial) vectors: V}* — V' + aK#"S;

15 L 2,(V L2,(V) | . 2,(8)\g 1o y v u~2V
534(1{2 (m55( )704215)/m55( )7m44( >)S47§V5M((g’u K2 _ KFKY) — gt ( )) 5

To get the canonical K2 — m? form for the scalars one defines a "wave function

renormalization” for the scalars with Sy — 7, sk Sy with Z m2 /(M2 4 —cis)

Thus one will get: %5‘4 (K% - 272 *imi (S))S4



MODES FROM GAUSSIAN APPROXIMATION

Classical level mixing

6[:21uad = —%iKu [dijk (ALP; — PA; 5) + Fijk (‘71-“5} + Si‘_/j”)]¢k7 i,5,k=0,...,8

Specially for S — V in the 4 — 5 sector ~ (with a new way)

[ s 5 S S, DHK) —iK,cq
SV _ 45 4 45% 5 45 _ 44 v €45
ods ‘5{(5‘”5“)1““” (V;) (55, VIOM, (w” M = <z‘Kuc45 —iD,) 44 (K)

The propagators: iD= K2 — (¥ and i)}, =2 Pk + (m2., — K?)P],
In the Gaussian approximation one has the determinant:
det M}, =iDy! (K) det (iD},,) 44 (K) + icjsDaa(K)K* P},
=— (mi*i i) (K2 = i{*i) (K? - mf(*i) , 14143 modes
where m‘;‘{ai = Zi,*iﬁf 19 with Z}Q{Si =2,/ (W2, —c3s).



MODES FROM GAUSSIAN APPROXIMATION

Classical level mixing

écgﬁad = f%iKu[ ik (AL P — PAS) + fiji (VFS; + 52"7”)]%7 4,5,k=0,...,8
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1[5 - S e DK —iKyc
seit = G ot (55« vt (53)]. nate = (U0 ot )

ZKMC45 pr,44
. 2,(S
The propagators: zD44/55 =K? - m44( ) and lew a4/55 = m2 Pl + (M2, — K?)Pl,
In the Gaussian approximation one has the determinant:
det M5, =iDy,! (K) det (iD},,) 44 (K) + icjsDaa(K)K* P,
=_ (mi(*i c45) (K? - mK*i) (K% - mf‘,*i) , 1+1+3 modes

In the eff. potential: [} log Det(¢D~1(K) + I1(0)) = [} log const + [, log S + 3 [, log Vi



MODES FROM GAUSSIAN APPROXIMATION

Classical level mixing

srguad — f%mﬂ[ ik (AP — PAS) + fijn (VS +§ﬂ7f‘)]¢k, i,5,k=0,...,8

Specially for S — V in the 4 — 5 sector ~ (with a new way)

1[5 - S e DK —iKyc
sest = G ot (55« vt (53)]. nate = (U0t )

1K ca5 w44
The propagators: iD= K2 =i and D}, .o =2 . P+ (m2, . — K?)PL,
In the Gaussian approximation one has the determinant:
det M5, =iDy,! (K) det (iD},,) 44 (K) + icjsDaa(K)K* P},
=— (mi(*i c3s) (K? — mK*i) (K% - mf‘,*i) , 14143 modes
In the eff. potential: [} log Det(¢D~1(K) + I1(0)) = + [x log S +3 [} log Vi

In dimensional regularization one can get rid of the constant.



MODES FROM GAUSSIAN APPROXIMATION

Mixing in the Gaussian approximation

Contribution of the self-energy at vanishing external momentum

iDTHK) —iG L (K) = iD7(K) — TI(0)

iDy, (K) =iGo ,,, (K) = 1D} (K) + 1 (0)

(15)

For V/A:
iGioe  (K) = MEPL(K) + Y2,y , (M2 — K?) P, (K), M2, =m?+111/,,(0)
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iDTHK) —iG L (K) = iD7(K) — TI(0)

iDy, (K) =iGo ,,, (K) = 1D} (K) + 1 (0)

(15)

For V/A:
Gl (K) = MEPL(K) + 3.y, (M2 — K?)Pi,(K), M3, =m2+11L,,(0)

Specially in the vector 4 — 5 sector:
det M23, = — (M2 55 — 35) (K2 — M2,) (K2 — MPos) (K2 — N255)%, 1414142 modes

s s
where M2, = =23 44(m44< e H( )(0)) with Z3 ,, = ML 55/ (M .55 — Cis)-



CURVATURE MASSES

e (Pseudo)scalar curvature masses

Tree-level T=0 T#0
M2 — M2 =%+ Tyac(0) + Tmat(0)

Already calculated by Schaefer and Wagner and part of the latest version ELSM.
Momentum has to be kept in the determinant for the (axial) vectors because those
couple to the momentum to form a Lorentz scalar.

Phys. Rev. D 79 , 014018 (2009)
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e (Axial) vector curvature masses

Tree-level Fermionic correction
N N N T=0 - ~ N
m? = m% = m%‘ M\?ac = MfacyL/T = mzL/T + Hvac,L/T(O)
T#0 72— 2
— ME 10 =m7 170 + ry1/4(0)

Thus, both T" and L get the same vacuum correction and at 7" # 0 the 4-transversal
splits to 3-transversal + 3-longitudinal, and each modes (L,l,t) gets separate matter
correction. In ELSM IIz,(0) = IT;(0) # I1;(0).



RESULTS

(Pseudo)scalar curvature masses
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RESULTS

(Axial) vector curvature masses with gy = 0
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SUMMARY AND OUTLOOK

e The one-loop fermionic self-energy of the (axial) vectors was calculated.
e The decomposition of the (axial) vector self-energy modes was done.

o The separation of the modes in the Gaussian approximation and a new way to resolve
the (pseudo)scalar — (axial) vector mixing was shown.

e The T-dependence of the curvature masses of various modes was investigated.
e A publication about our results coming soon.
e Using the effective potential in Eq. (4) we plan to investigate the thermodynamics

of the consistent version of ELSM at one-loop level with gy # 0.
Existence and location of CEP, pressure and its derivatives, etc.
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