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Abstract

We formulate the perturbative renormalization for the out-of-equilibrium
gφ3, gφ4, QED ... quantum field theory in the formalism with the
finite time path. We use the retarded/advanced (R/A) basis of out-
of-equilibrium Green functions, in which time ordering plays a role.

We use the dimensional regularization method and find the cor-
respondence of diverging contributions in the Feynman diagrams and
their counterparts in R/A basis. We find that the Dimensional Renor-
malization works exactly the way it does within the S-matrix field the-
ories with the same number of subtractions. Although we reveal the
number of problems related to energy (non-)conservation and causal-
ity, they are kept under control thanks to the D < 4 sector.
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Figure 1: Finite Time Path

This talk is based mostly on the following work with D. Klabučar and D.
Kuić:

I. D., D. Klabučar, Particles 2 (2019) 92-102, 2001.00124 hep-th
I.D., D. Klabučar, D. Kuić, Particles 3 (2020) 676-692, 2012.00863 hep-ph

We formulate the perturbative renormalization for the out-of-equilibrium
quantum field theories such as gφ3 , gφ4 , QED , ...

in the formalism with the finite time path (see Figure 1),

which is necessary for time-evolution of two-point functions in out-of-equilibrium
quantum field theories
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The perturbation expansion is defined in matrix propagators Gij(p).
The Wigner transforms of propagators, with transition to retarded/advanced
basis leads to accumulation of all time dependence into vertex functions and
time-independent (in time corresponding to t =∞) lowest order propagators
in the retarded/advanced basis:

G
(0)
R(A)(p) =

−i

p2 − m2 ± 2 i ε p0
, (1)

and for the Keldysh component of the scalar propagator:

G
(0)
K (x, y) =

∫
d4p2πδ(p2 −m2)(1 + 2f(ωp))e

−ip(x−y),

G
(0)
K (p) = G

(0)
K,R(p)−G(0)

K,A(p)

G
(0)
K,R(p) = −G(0)

K,A(−p) = −[1 + 2f(ωp)]p0/ωpG
(0)
R,∞(p),

ωp =
√
~p2 +m2. (2)

In the above expressions, time ordering plays a role.
The equal time limit of GK(p; t1, t2) plays the role of particle number:

N(~p, t) ∝ limt1→t2=tGK(p; t1, t2) .

Propagators are represented graphically in Figure 2.
Retarded propagators point downhill (opposite to the time direction)
and advanced propagators point uphill (in the time direction).
Retarded propagators become advanced if one interchanges points 1 and 2.
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Figure 2: Graphical Representation of Propagators

VERTEX FUNCTION - at equal time limit
At each vertex (”j”) one collects the factors depending on the vertex and

integrates over the space-time of the vertex ( λij = ±1 for incoming/outgoing
line):

∫ ∞
0

dx0j
∫
d3xj

(2π)4
e
i
∑

ij
λij pijxj = δ3(

∑
ij

λij~pij)
i

2π(
∑
ij λijp0ij + iε)

. (3)

After integrating all internal times, all time dependence is contained in
the external momenta ei

∑
i
λkp0,kx0,k , where λk is equal to +1 (−1) if the

propagator is incoming (outgoing) to vertex k.

As we are taking equal time limit x0,k → t, the factor becomes eit(
∑

k
λkp0,k).

Thus, the total time dependence transforms into e
it(
∑

j

∑
ij
λij p0,ij+

∑
k
λkp0,k)

.

Vertices are represented graphically in Figure 3.
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Figure 3: Vertices in Finite Time Path

There are four types of vertices:
A) At the far left in Figure 3 is the vertex with maximal time (with

respect to the other ends of propagators). Those vertices are completely
eliminated from perturbation expansion.

B) next two vertices from the left are normal vertices. Energy is conserved
at these vertices.

C) the fourth from the left is the vertex with minimal time. Energy is
not conserved at this vertex, in the way consistent with energy-time uncer-
tainty relations. This type of vertex carries all the time dependence in the
perturbation expansion.

D) the last vertex should be normal, but it is not, as its propagators close
to form the divergent loop. We discuss this below.
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We use the dimensional regularization method and find the
correspondence of diverging contributions in the Feynman diagrams
and their counterparts in R/A basis.

We find:

The Dimensional Renormalization works exactly the way it does within the
S-matrix field theories with the same number of subtractions.

Nevertheless there is a number of problems:

1. The upper (in time) vertex of divergent loop does not conserve energy.
This failure is repaired while the loops converge at D < 4

2. Renormalized self-energies ΣR(p) and vacuum polarizations ΠR(p) should
be retarded (as indicated by the subscript R), as they are obtained from two
retarded propagators. But they are in fact not retarded since a divergence
spoils this, thus creating the causality problem of the type Θ(t)Θ(t) 6= Θ(t).

Σ1
F (p) = − g2

16π2

1

κ
− γE

2
+ 1 +

1

2
ln(4π

µ2

m2
)− 1

2

√
1− 4m2

p2 + iε
ln


√

1− 4m2

p2+iε
+ 1√

1− 4m2

p2+iε
− 1


with the limit of large p0

ΣF (p2,m2)p2→∞ ≈ −
g2

16π2

{
1

κ
− γE

2
+ 1 +

1

2
ln(4π

µ2

m2
)− 1

2
ln

[
−m

2

p2

]}
.

To verify causality of two point function one may try to project out the
retarded part of finite (subtracted) part of Σ1

F (p), namely

−i
∫ dp′0

2π

Σ1
F,finite(p)

p0 − p′0 − i ε
,

by integration
∫
dp0 over large semicircle. But the contribution over very

large semicircle does not vanish and the integral is ill-defined.
Indeed, we have started from the expressions for GF (ΣF ) containing

only retarded and advanced functions, and in the absence of divergence we
expect this to be true at the end of calculation. Instead, the function ΣF

is not combination of R and A functions, otherwise it should vanish when
|p0| → ∞ and κ chosen as arbitrarily small, such a behavior can be shifted
to arbitrarily high scale. Specifically, it means that, the renormalized Σ“R”
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Figure 4: Composite Object with Correct Causality

is not really retarded (which we indicate by the quotation marks “ ”), and
one cannot say which of its end points is earlier in time.

This failure is repaired by joining to the loop an upper leg so that the
composite objects GR(p)ΣR(p) and DR(p)ΠR(p) (see Figure 4), are true re-
tarded functions.

This reparation is possible while D < 4.

3. In the gφ4 theory (and similarly for the gluon diagram in QCD) the
ΣR(p) can be multiplied by retarded GR(p) or advanced GA(p) propagator
(eventually of higher order to keep things finite), thus forming “sunset”-
diagram (see Figure 5).

In this case, the GA(p)-type contribution should be killed, but it is not,
as Σ“R”(p) is not retarded. This creates causality problem of the type
Θ(t)Θ(−t) 6= 0.

The contribution from sunset diagram with GA(p) is killed by performing
the integral while D < 4

While we still get everything work, these points indicate the extended
role of the D < 4 sector.

Notice the universality: the problems are the same in λφ3, λφ4, QED,
and QCD.

The importance of D < 4 sector is growing, but things are under control,
for now.
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Figure 5: Sunset Diagram Incorporating the Divergent Loop
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Prospects:

Complete renormalization (renormalization of vertex functions)

Renormalization Group in Finite-Time-Path out of equilibrium
approach

Damping rates from Finite-Time-Path approach

Do more phenomenology

For out-of-equilibrium processes and decays calculated with
Finite-Time-Path, reproduce/replace S-matrix results
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