Effects of random phase shifts from multi-particle Coulomb-interactions on Bose-Einstein correlations

Ayon Mukherjee with

Srikanta Kumar Tripathy, Sándor Lökös, Antal Jakovác & Máté Csanád

Department of Atomic Physics Eötvös Loránd Tudományegyetem Budapest, Hungary

ACHT '21, Zagreb/Online

The Basics: Bose-Einstein correlations

- Quantum-statistical BE-HBT correlations: main source of momentum correlation for identical bosons (with symmetric pair WF's) in HIC's
- Probes for space-time geometry of emitter
- Phase-space density of emitter:

$$S(x,p) = S_{
m core}(x,p) + S_{
m halo}(x,p)$$

- "core" \rightarrow primordial hadrons & "halo" \rightarrow hadrons from decays [T.Csörgő, B.Lörstadand, J.Zimányi; Z.Phys.C71,491 (1996)]
- Two-particle correlation fn., with $q = p_1 p_2$:

$$C_2(q, \mathcal{K}) = 1 + rac{\left| ilde{S}(q, \mathcal{K})
ight|^2}{\left| ilde{S}(0, \mathcal{K})
ight|^2} pprox 1 + \lambda_2 rac{\left| ilde{S}_{ ext{core}}(q, \mathcal{K})
ight|^2}{\left| ilde{S}_{ ext{core}}(0, \mathcal{K})
ight|^2}$$

Correlation strengths

• Two-particle correlation strength:

$$\lambda_2 = C_2(0) - 1 = f_c^2 = \left(\frac{N_{\text{core}}}{N_{\text{core}} + N_{\text{halo}}}\right)^2$$

- Three-particle correlation strength: $\lambda_3 = C_3(0) 1$
- Partially coherent hadron production distorts λ_2 & λ_3 :

$$\begin{split} \lambda_2 &= f_c^2 ((1-p_c)^2 + 2p_c(1-p_c)) \\ \lambda_3 &= 2f_c^3 ((1-p_c)^3 + 3p_c(1-p_c)^2) + 3f_c^2 ((1-p_c)^2 + 2p_c(1-p_c)) ; \end{split}$$

• p_c: partially coherent fraction of the fireball

[T.Csörgő; HeavyIonPhys.15:1-80 (2002)]

• $\lambda_2 \& \lambda_3 \rightarrow$ probes for partial coherence

Coulomb-interaction effects

- Particles' paths modified by surrounding charges \rightarrow phase shift
- Bose-Einstein correlations contain symmetrised wave functions
- \bullet Path of pair: closed loop \rightarrow Aharonov-Bohm effect with random field:

[Y.Aharonov & D.Bohm; Phys.Rev.115,485 (1959)]

ullet Background is the internal field ightarrow causes the phase-shift

Set-up

- Illustration of 2-particle correlation measurement set-up
- a and b as sources, A and B as detectors
- R and d as distance between the sources and detectors, respectively
- k as the phase difference and L as the path length
- Two-particles, pure core, w/o random phase:

$$C_{AB} = \frac{\langle |\Psi(r_A, r_B)|^2 \rangle}{\langle |\Phi(r_A)|^2 \rangle \langle |\Phi(r_B)|^2 \rangle} = 1 + \cos(qRd/L) \implies C_{AB}\big|_{q=0} - 1 = 1$$

Random phase

Correlation functions modified by randomly picked up phasesWith random phase:

$$\langle |\Psi(r_A, r_B)|^2 \rangle \sim 1 + \cos(qRd/L + \phi) \implies C_{AB} - 1 = \cos(\phi),$$

 $\phi = k \left(\sqrt{L^2 + R^2} - L\right) = k\Delta x$

- $C_2(q) = 1 + \cos(qRd/L) \rightarrow C_2(q) = 1 + \cos(qRd/L + \phi)$
- Phase distribution is Gaussian $e^{-\phi^2/\left(2\sigma_\phi^2
 ight)}$
- Averaging over ϕ values: $C_2(q) 1 = \cos(qRd/L)e^{-2\sigma_{\phi}^2}$
- Two- and three-particle correlation strengths reduced:

$$\lambda_2 = C_2(0) - 1 = e^{-2\sigma_{\phi}^2} \& \lambda_3 = C_3(0) - 1 = 3e^{-2\sigma_{\phi}^2} + 2e^{-3\sigma_{\phi}^2}$$

From time delay to phase shift

- ϕ results in a change in the "time-of-flight" Δt
- Charge cloud has $N_{\rm charges}$ (N_c) in a 3-D Hubble flow
- $\bullet\,$ Test particle with initial momentum $\rho_{\rm in}$ in random direction

- Measuring $t_{
 m ToF}(d)$, calculate $\Delta t = t_{
 m ToF}(d) t_{
 m ToF}^{(N_c=0)}(d)$
- Δt distribution is Gaussian, with width σ_t
- Δt related to phase-shift:

$$\phi = k\Delta x = \Delta t \cdot v \frac{p}{\hbar} = \Delta t \frac{p^2}{\hbar\sqrt{m^2 + p^2}} \implies \sigma_{\phi} = \frac{\sigma_t p^2}{\hbar\sqrt{m^2 + p^2}}$$

• Imp. parameters: charge density N_c , path-length d & fireball size R

Time-delay distribution

- Normalised Δt distr. is slightly off-centre and not perfectly Gaussian
- Δt distr. becomes narrower with increasing p

σ_t & momentum

- $\sigma_t \equiv \sigma_t(p)$ close to power-law
- Larger charge density: larger phase shift possible

Correlation strength modification

- Low- m_t decrease of $\lambda_{2,3}$
- Magnitude strongly depends on charge density

- Two- & three-particle correlations may reveal coherence
- ullet The charge-cloud around a given pair ightarrow a random background
- Can be interpreted as an Aharonov-Bohm-like effect
- The $\lambda_2(m_t)$ & $\lambda_3(m_t)$ are modified at lower m_t
- At very small momenta, the effect disappears due to σ_{ϕ} being proportional to $p^2 \cdot \sigma_t$, and σ_t not increasing fast enough for $p \to 0$
- At large momenta, the effect disappears as $\sigma_{\phi}
 ightarrow 0$
- The results indicate that there may be cases where this effect has to be taken into account, especially at low pair transverse masses

Thank you for your attention!