Some Thoughts on Top

Andrea Wulzer

Università degli Studi di Padova

1

0) It is there!

and we have the opportunity to study its properties

2)

0) It is there!

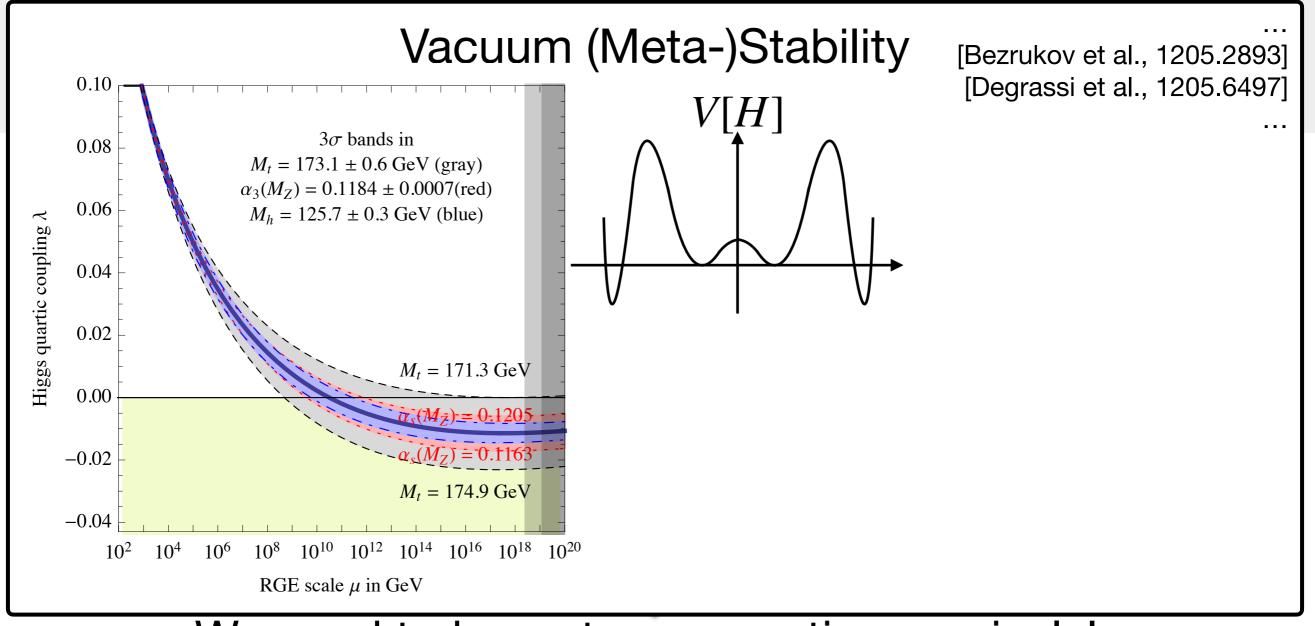
and we have the opportunity to study its properties

1) Is the most strongly coupled fundamental particle

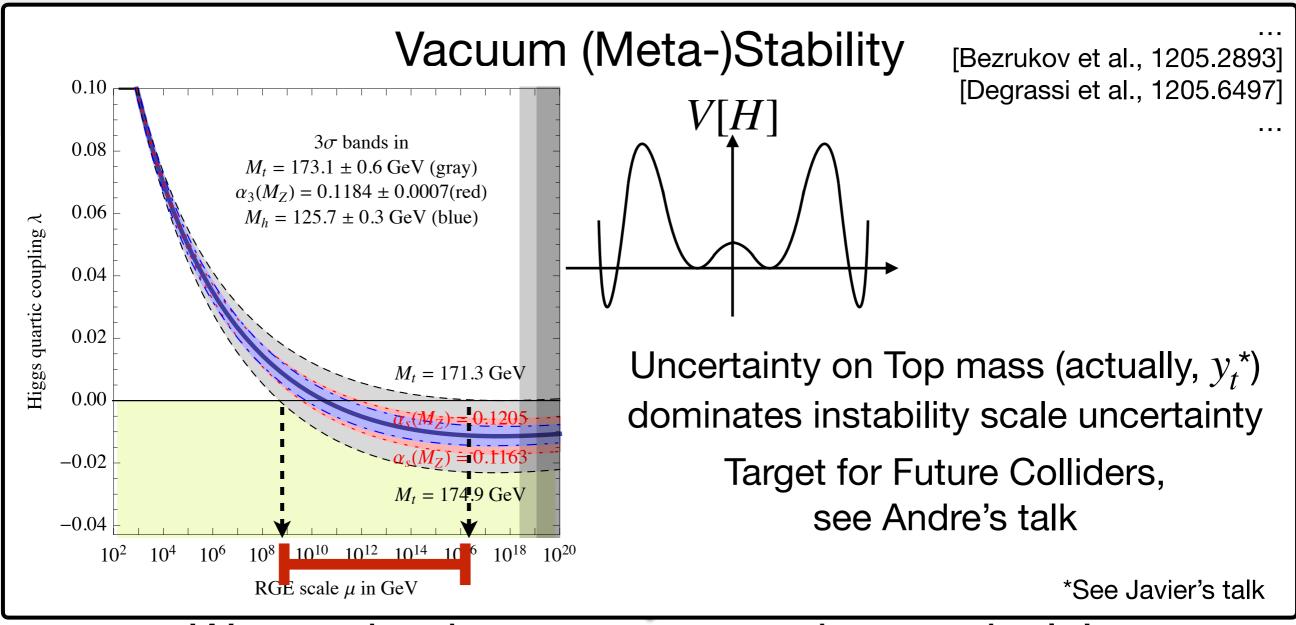
$$\mathbf{g}_{\mathrm{S}} \gtrsim \mathbf{y}_{\mathrm{t}} \gtrsim \mathbf{g} \gtrsim \mathbf{g}' \gtrsim \sqrt{\lambda} \gg y_b \gg y_c \gg \dots$$

this is why "top loops" so important in so many calculations (e.g. EWPT)

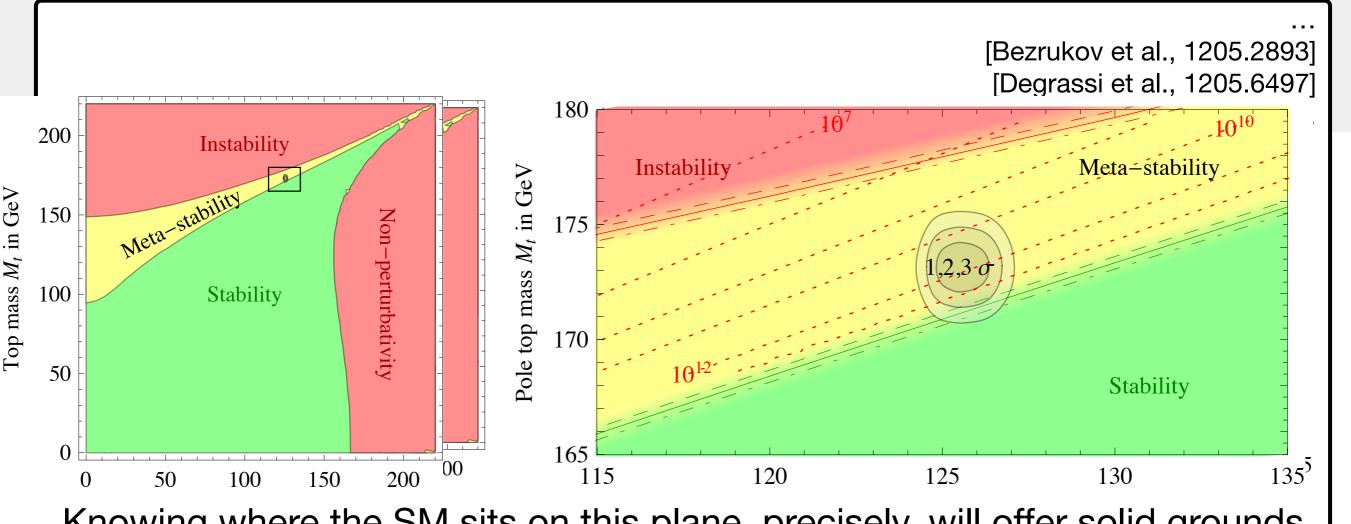
0) It is there!


and we have the opportunity to study its properties

1) Is the most strongly coupled fundamental particle


$$\mathbf{g}_{\mathrm{S}} \gtrsim \mathbf{y}_{\mathrm{t}} \gtrsim \mathbf{g} \gtrsim \mathbf{g}' \gtrsim \sqrt{\lambda} \gg y_b \gg y_c \gg \dots$$

this is why "top loops" so important in so many calculations (e.g. EWPT)


We need to know top properties precisely!* even to answer questions that are **unrelated** with the top quark itself

We need to know top properties precisely! even to answer questions that are **unrelated** with the top quark itself

We need to know top properties precisely! even to answer questions that are **unrelated** with the top quark itself

Knowing where the SM sits on this plane, precisely, will offer solid grounds to non-solid speculations like Asymptotic Safety and Higgs Inflation

We need to know top properties precisely! even to answer questions that are **unrelated** with the top quark itself

0) It is there!

and we have the opportunity to study its properties

1) Is the most strongly coupled fundamental particle

$$\mathbf{g}_{\mathrm{S}} \gtrsim \mathbf{y}_{\mathrm{t}} \gtrsim \mathbf{g} \gtrsim \mathbf{g}' \gtrsim \sqrt{\lambda} \gg y_b \gg y_c \gg \dots$$

this is why "top loops" so important in so many calculations (e.g. EWPT)

We need to know top properties precisely! even to answer questions that are **unrelated** with the top quark itself

0) It is there!

and we have the opportunity to study its properties

1) Is the most strongly coupled fundamental particle

$$\mathbf{g}_{\mathrm{S}} \gtrsim \mathbf{y}_{\mathrm{t}} \gtrsim \mathbf{g} \gtrsim \mathbf{g}' \gtrsim \sqrt{\lambda} \gg y_b \gg y_c \gg \dots$$

this is why "top loops" so important in so many calculations (e.g. EWPT)

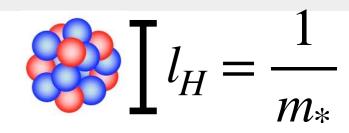
We need to know top properties precisely! even to answer questions that are **unrelated** with the top quark itself

2) Could be the **portal** towards the truly microscopic origin of the **Higgs boson and EWSB**

0) It is there!

and we have the opportunity to study its properties

1) Is the most strongly coupled fundamental particle


$$\mathbf{g}_{\mathrm{S}} \gtrsim \mathbf{y}_{\mathrm{t}} \gtrsim \mathbf{g} \gtrsim \mathbf{g}' \gtrsim \sqrt{\lambda} \gg y_b \gg y_c \gg \dots$$

this is why "top loops" so important in so many calculations (e.g. EWPT)

We need to know top properties precisely! even to answer questions that are **unrelated** with the top quark itself

2) Could be the portal towards the truly microscopic origin of the Higgs boson and EWSB let's discuss this concretely, for a Composite Higgs

Higgs is bound state of a new strong force: $\int l_H = \frac{1}{m_*}$

Higgs is bound state of a new strong force: $\int I_H = \frac{1}{m_*}$

A sharp putative answer to the question of EWSB origin

Higgs is bound state of a new strong force: $\bigvee I_H = \frac{1}{m_*}$

E

 m_*

A sharp putative answer to the question of EWSB origin

H Two sectors exist at some Very High (>>TeV) scale Λ_{VH} :

Composite Sector QCD-like confining theory. **No Higgs field.**

Higgs is bound state of a new strong force: $\bigvee I_H = \frac{1}{m_*}$ A sharp putative answer to the question of EWSB origin Two sectors exist at some Very High (>>TeV) scale Λ_{VH} : **Composite** Sector QCD-like confining theory. **No Higgs field.** At m_* , the CS confines. "Hadrons" form, among which the **Higgs** m_*

Higgs is bound state of a new strong force: $I_H = -$ A sharp **putative** answer to the question of EWSB origin $E_{\Lambda_{VH}}$ Two sectors exist at some Very High (>>TeV) scale Λ_{VH} :

> **Elementary** Sector SM **minus** Higgs $W_{\mu}, G_{\mu}, f_{L,R}, (? t_R ?)$

Composite Sector QCD-like confining theory. **No Higgs field.**

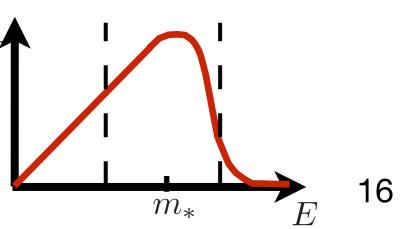
 m_* At m_* , the CS confines. "Hadrons" form, among which the **Higgs** Below here, the SM is recovered

 m_*

Higgs is bound state of a new strong force:

A sharp putative answer to the question of EWSB origin

 Λ_{VH} Two sectors exist at some Very High (>>TeV) scale Λ_{VH} :


Elementary Sector SM **minus** Higgs $W_{\mu}, G_{\mu}, f_{L,R}, (? t_R ?)$ **Composite** Sector QCD-like confining theory. **No Higgs field.**

dE

 m_* At m_* , the CS confines. "Hadrons" form, among which the **Higgs** Below here, the SM is recovered

Higgs is SM-like if it is a Nambu-Goldstone boson

Higgs is **Naturally light** if $m_* \sim \text{TeV}$ Composite Higgs is **transparent** to HE modes

 m_{*}

The Top must couple a lot to CS, to get large Yukawa

 $Q_L \longrightarrow CS$

The Top must couple a lot to CS, to get large Yukawa

The "SM-like" bilinear coupling structure ...

... is found **not** to work (while can work for other fermions).

 $Q_L \ \underline{CS}$

The Top must couple a lot to CS, to get large Yukawa

The "SM-like" bilinear coupling structure ...

... is found **not** to work (while can work for other fermions). What works is **linear** couplings:

$$Q_{L}, t_{R} CS = \frac{\lambda_{L,R}}{g_{*}}$$

The Top must couple a lot to CS, to get large Yukawa

The "SM-like" bilinear coupling structure ...

... is found **not** to work (while can work for other fermions).

What works is **linear** couplings:

$$\frac{Q_{L}, t_{R} \ CS}{g_{*}} = \frac{\lambda_{L,R}}{g_{*}}$$

 g_* is the typical coupling between CS "hadrons".

 Q_L CS

$$g_{\rm SM} \leq g_* < 4\pi$$

The Top must couple a lot to CS, to get large Yukawa

The "SM-like" bilinear coupling structure ...

... is found **not** to work (while can work for other fermions). What works is **linear** couplings:

 $Q_L \ \underline{CS}$

The Top must couple a lot to CS, to get large Yukawa

The "SM-like" bilinear coupling structure ...

... is found **not** to work (while can work for other fermions). What works is **linear** couplings:

$$Q_{L}, t_{R} CS = \frac{\lambda_{L,R}}{g_{*}} \longrightarrow y_{t} = \frac{Q_{L}}{t_{R}} \xrightarrow{\text{Higgs}} = \frac{\lambda_{L}\lambda_{R}}{g_{*}}$$

 Q_L CS

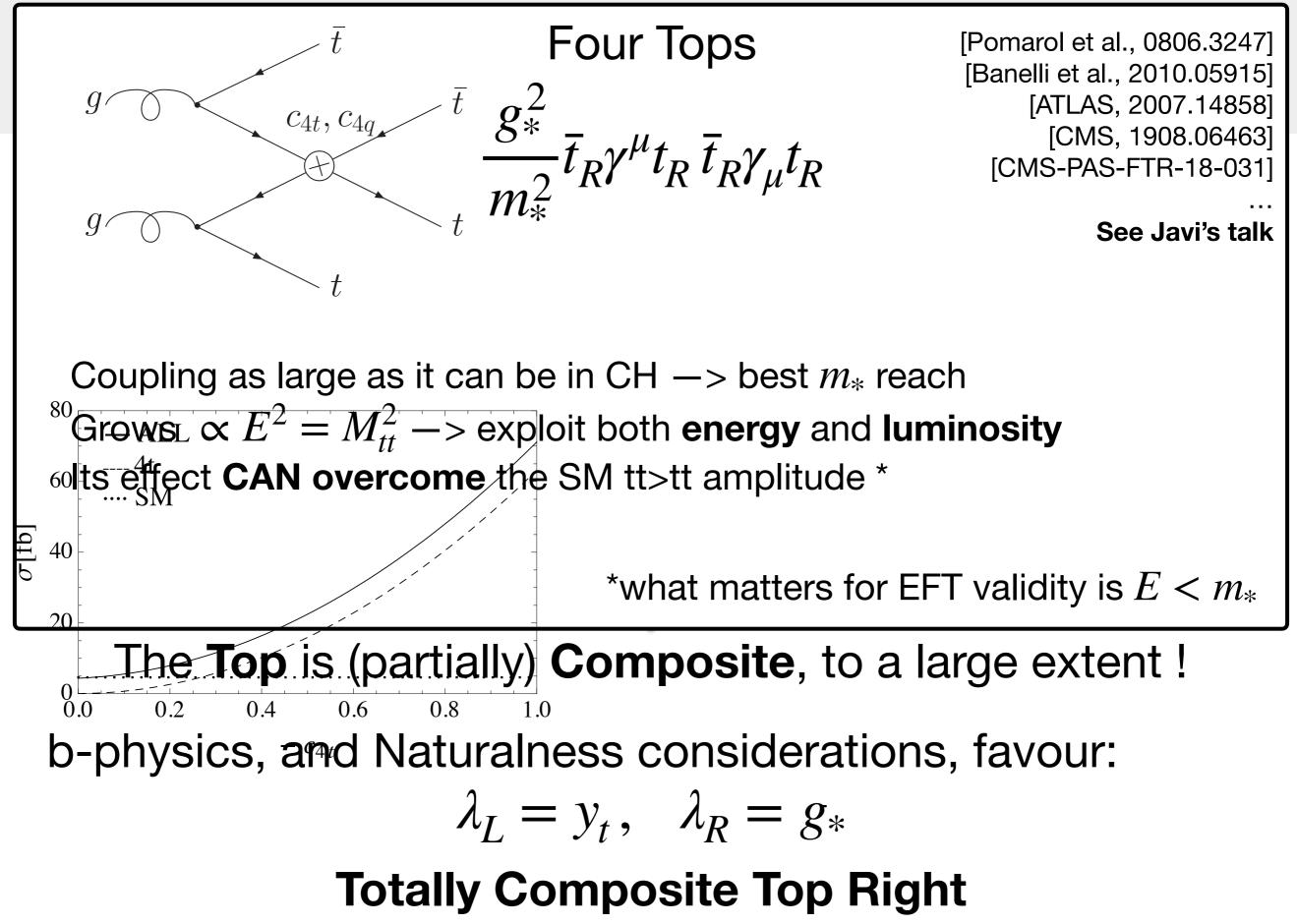
The **Top** is (partially) **Composite**, to a large extent !

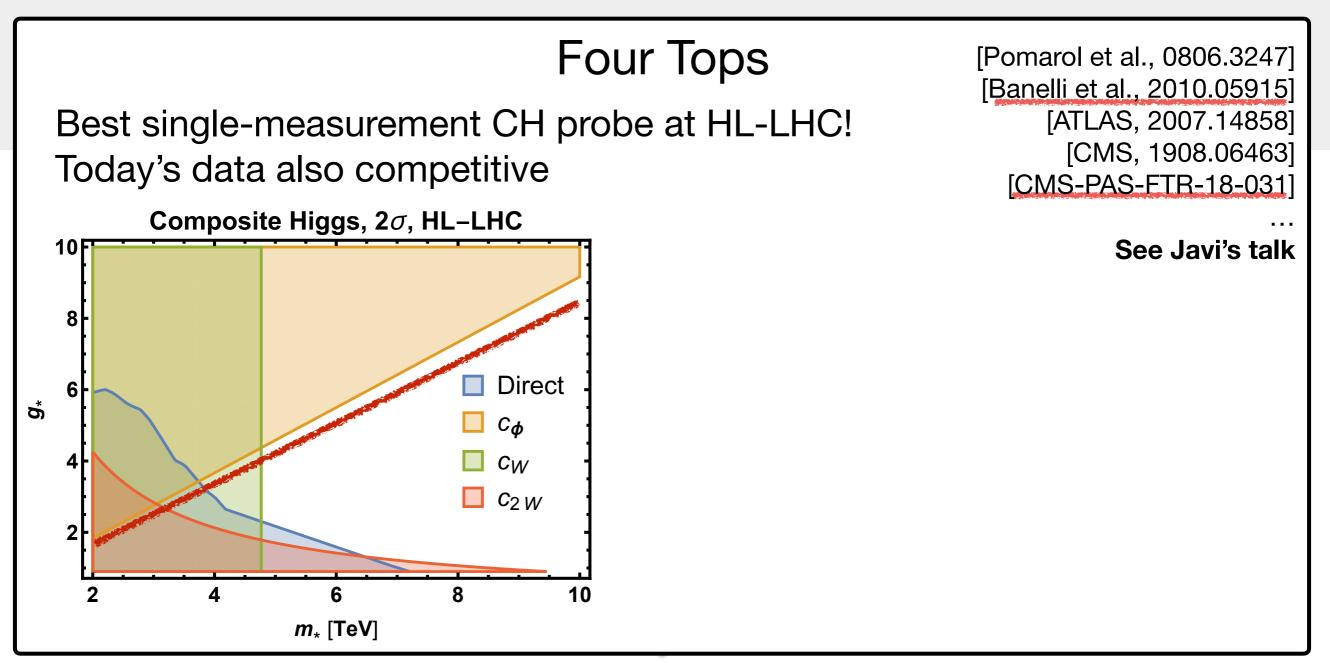
The Top must couple a lot to CS, to get large Yukawa

The "SM-like" bilinear coupling structure ...

... is found **not** to work (while can work for other fermions). What works is **linear** couplings:

$$Q_{L}, t_{R} CS = \frac{\lambda_{L,R}}{g_{*}} \longrightarrow y_{t} = \frac{Q_{L}}{t_{R}} \xrightarrow{\text{Higgs}} = \frac{\lambda_{L}\lambda_{R}}{g_{*}}$$

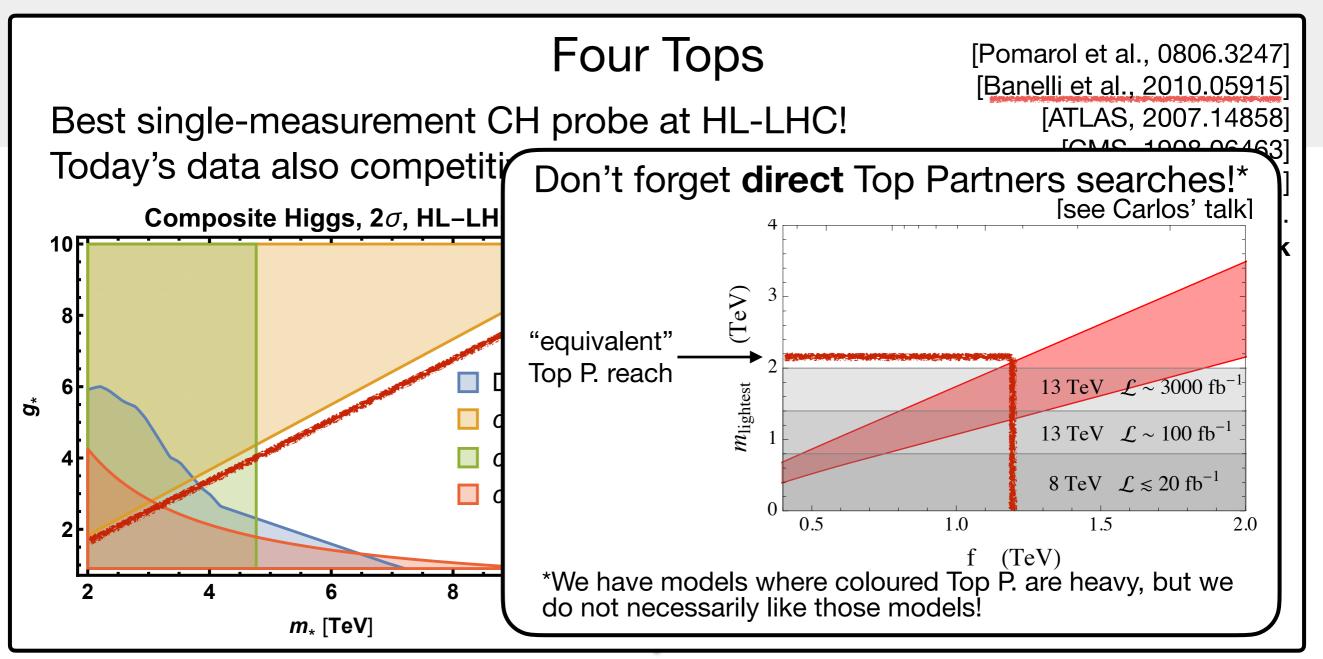

 $Q_L \sim CS$


The **Top** is (partially) **Composite**, to a large extent !

b-physics, and Naturalness considerations, favour:

$$\lambda_L = y_t, \quad \lambda_R = g_*$$

Totally Composite Top Right



The **Top** is (partially) **Composite**, to a large extent !

b-physics, and Naturalness considerations, suggest:

$$\lambda_L = y_t, \quad \lambda_R = g_*$$

Totally Composite Top Right

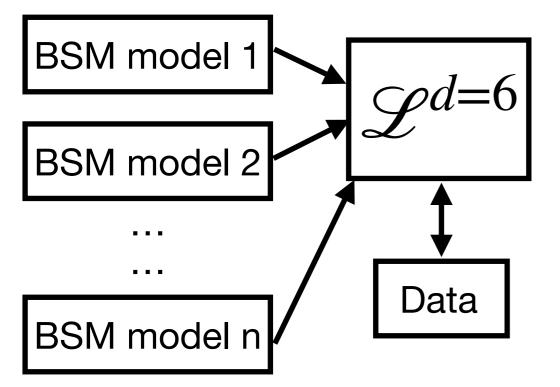
The Top is (partially) Composite, to a large extent !

b-physics, and Naturalness considerations, suggest:

$$\lambda_L = y_t, \quad \lambda_R = g_*$$

Totally Composite Top Right

0) It is there!

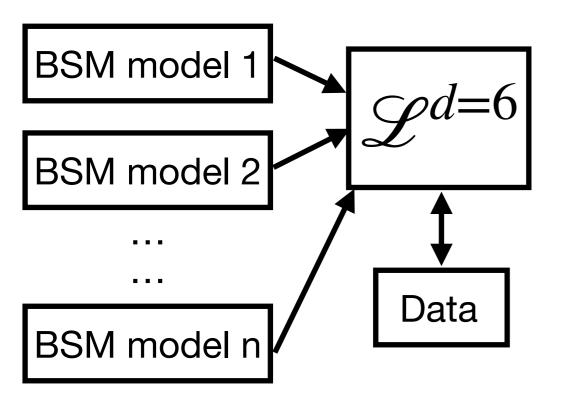

and we have the opportunity to study its properties

0) It is there!

and we have the opportunity to study its properties

EFT searches = model-independent probes of heavy BSM

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}^{d=6} + \dots$$



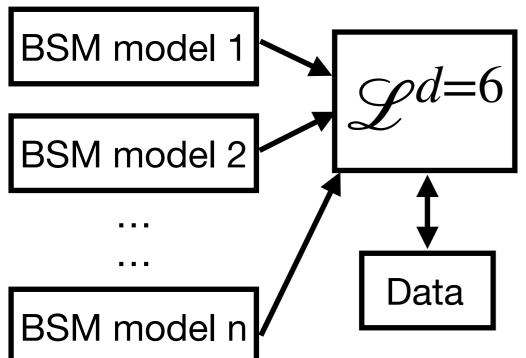
0) It is there!

and we have the opportunity to study its properties

EFT searches = **model-independent** probes of heavy BSM

$$\mathscr{L} = \mathscr{L}_{\rm SM} + \mathscr{L}^{d=6} + \dots$$

The EFT is a **container of models**, not a self-standing BSM scenario


Probes **several models** at once, including **not-yet formulated ones**

0) It is there!

and we have the opportunity to study its properties

EFT searches = model-independent probes of heavy BSM

$$\mathscr{L} = \mathscr{L}_{\rm SM} + \mathscr{L}^{d=6} + \dots$$

The EFT is a **container of models**, not a self-standing BSM scenario

Probes **several models** at once, including **not-yet formulated ones**

Synergetic with one-model searches

The EFT ToDo list, **unordered:**

Define target interaction operators: [1802.07237] the initial target must be simple enough. E.g., top-philic EFT [1807.02441]

$$O_{tt} = (\bar{t}_R \gamma_\mu t_R)^2$$

$$O_{tq} = (\bar{t}_R \gamma_\mu t_R) (\bar{q}_L \gamma^\mu q_L)$$

$$O_{tq}^{(8)} = (\bar{t}_R \gamma_\mu t^A t_R) (\bar{q}_L \gamma^\mu t^A q_L)$$

$$O_{qq} = (\bar{q}_L \gamma_\mu q_L)^2$$

$$O_{qq}^{(8)} = (\bar{q}_L \gamma_\mu t^A q_L)^2$$

$$O_{qq}^{(8)} = (\bar{q}_L \gamma_\mu t^A q_L)^2$$

$$O_{tW} = \left(\overline{q}_L \sigma^{\mu\nu} \tau^I t_R\right) \tilde{H} W^I_{\mu\nu}$$

$$O_{tB} = \left(\overline{q}_L \sigma^{\mu\nu} t_R\right) \tilde{H} B_{\mu\nu}$$

$$O_{tG} = \left(\overline{q}_L \sigma^{\mu\nu} T^A t_R\right) \tilde{H} G^A_{\mu\nu}$$

$$O_{Ht} = i(H^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{t}_R \gamma^{\mu} t_R)$$
$$O_{Hq} = i(H^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{q}_L \gamma^{\mu} q_L)$$
$$O_{Hq}^{(3)} = i(H^{\dagger} \sigma^a \overset{\leftrightarrow}{D_{\mu}} H)(\bar{q}_L \gamma^{\mu} \sigma^a q_L)$$
$$O_{y_t} = y_t H^{\dagger} H \bar{q}_L \widetilde{H} t_R$$

$$O_{tD} = (\partial^{\mu} B_{\mu\nu})(\bar{t}_{R} \gamma^{\nu} t_{R})$$

$$O_{tD}^{(8)} = (D^{\mu} G_{\mu\nu}^{A})(\bar{t}_{R} \gamma^{\nu} t^{A} t_{R})$$

$$O_{qD} = (\partial^{\mu} B_{\mu\nu})(\bar{q}_{L} \gamma^{\nu} q_{L})$$

$$O_{qD}^{(8)} = (D^{\mu} G_{\mu\nu}^{A})(\bar{q}_{L} \gamma^{\nu} t^{A} q_{L})$$

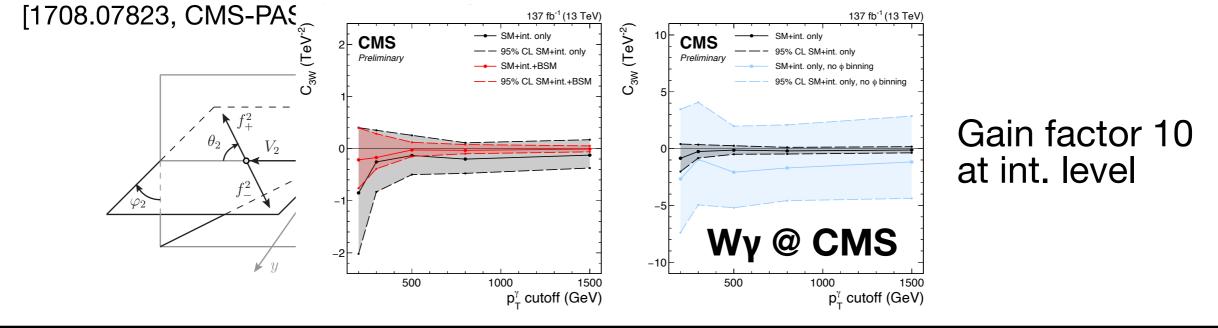
$$O_{qD}^{(3)} = (D^{\mu} W_{\mu\nu}^{a})(\bar{q}_{L} \gamma^{\nu} \sigma^{a} q_{L})$$

see Gauthier's and Javi's talks

The EFT ToDo list, **unordered:**

- Define target interaction operators: [1802.07237] the initial target must be simple enough. E.g., top-philic EFT [1807.02441]
- Find best exp. probe of each op. (or op. combination): huge variety of possible measurements, and of operators

The EFT ToDo list, unordered:


- Define target interaction operators: [1802.07237] the initial target must be simple enough. E.g., top-philic EFT [1807.02441]
- Find best exp. probe of each op. (or op. combination): huge variety of possible measurements, and of operators

For instance ...

Energy-Growing, e.g. $t(b) V \rightarrow t(b) V$

[Dror et al., 1511.03674. Maltoni et al. 1904.05637. see Ken's talk]

Interference Resurrection:

The EFT ToDo list, **unordered:**

- Define target interaction operators: [1802.07237] the initial target must be simple enough. E.g., top-philic EFT [1807.02441]
- Find best exp. probe of each op. (or op. combination): huge variety of possible measurements, and of operators

For instance ...

Energy-Growing, e.g. $t(b) V \rightarrow t(b) V$

[Dror et al., 1511.03674, Maltoni et al. 1904.05637, see Ken's talk]

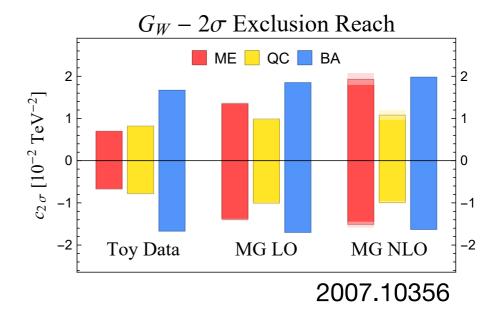
Interference Resurrection: for sure could be useful for top as well! [1708.07823, CMS-PAS-SMP-20-005] [see e.g. 1806.07438]

The EFT ToDo list, unordered:

- Define target interaction operators: [1802.07237] the initial target must be simple enough. E.g., top-philic EFT [1807.02441]
- Find best exp. probe of each op. (or op. combination): huge variety of possible measurements, and of operators

For instance ...

Energy-Growing, e.g. $t(b) V \rightarrow t(b) V$


[Dror et al., 1511.03674, Maltoni et al. 1904.05637, see Ken's talk]

Interference Resurrection: for sure could be useful for top as well!

[1708.07823, CMS-PAS-SMP-20-005]

Going Multivariate:

Machine Learning Potential [Brehmer et al., 1805.00020, 1908.06980, ...]

The EFT ToDo list, **unordered:**

- Define target interaction operators: [1802.07237] the initial target must be simple enough. E.g., top-philic EFT [1807.02441]
- Find best exp. probe of each op. (or op. combination): huge variety of possible measurements, and of operators

For instance ...

Energy-Growing, e.g. $t(b) V \rightarrow t(b) V$

[Dror et al., 1511.03674, Maltoni et al. 1904.05637, see Ken's talk]

Interference Resurrection: for sure could be useful for top as well! [1708.07823, CMS-PAS-SMP-20-005]

Going Multivariate: idem ! [see CMS-PAS-TOP-21-001] Machine Learning Potential [Brehmer et al., 1805.00020, 1908.06980, ...]

The EFT ToDo list, **unordered:**

Define target interaction operators: [1802.07237] the initial target must be simple enough. E.g., top-philic EFT [1807.02441]

Find best exp. probe of each op. (or op. combination): huge variety of possible measurements, and of operators

the most ambitious pheno program ever!

The EFT ToDo list, **unordered:**

- Define target interaction operators: [1802.07237] the initial target must be simple enough. E.g., top-philic EFT [1807.02441]
- Find best exp. probe of each op. (or op. combination): huge variety of possible measurements, and of operators

the most ambitious pheno program ever!

Make accurate enough predictions: of the RIGHT EFT-optimised observables see talks by John and Giulia also needs EFT prediction see talks by Ilaria and Hesham

The EFT ToDo list, **unordered:**

- Define target interaction operators: [1802.07237] the initial target must be simple enough. E.g., top-philic EFT [1807.02441]
- Find best exp. probe of each op. (or op. combination): huge variety of possible measurements, and of operators

the most ambitious pheno program ever!

- Make accurate enough predictions: of the RIGHT EFT-optimised observables see talks by John and Giulia
 also needs EFT prediction see talks by Ilaria and Hesham
- Make accurate enough measurements: of the RIGHT EFT-optimised observables see talks by Luca, James, Giulia, Joscha, ...

The EFT ToDo list, **unordered:**

- Define target interaction operators: [1802.07237] the initial target must be simple enough. E.g., top-philic EFT [1807.02441]
- Find best exp. probe of each op. (or op. combination): huge variety of possible measurements, and of operators

the most ambitious pheno program ever!

Make accurate enough predictions:

of the **RIGHT** EFT-optimised observables see talks by John and Giulia

> also needs EFT prediction see talks by Ilaria and Hesham

Make accurate enough measurements: of the RIGHT EFT-optimised observables see talks by Luca, James, Giulia, Joscha, ...

The EFT ToDo list, **unordered**: Define target interaction operators: [1802.07237] the initial target must be simple enough. E.g., top-philic EFT [1807.02441]

Find best exp. probe of each op. (or op. combination): huge variety of possible measurements, and of operators

the most ambitious pheno program ever!

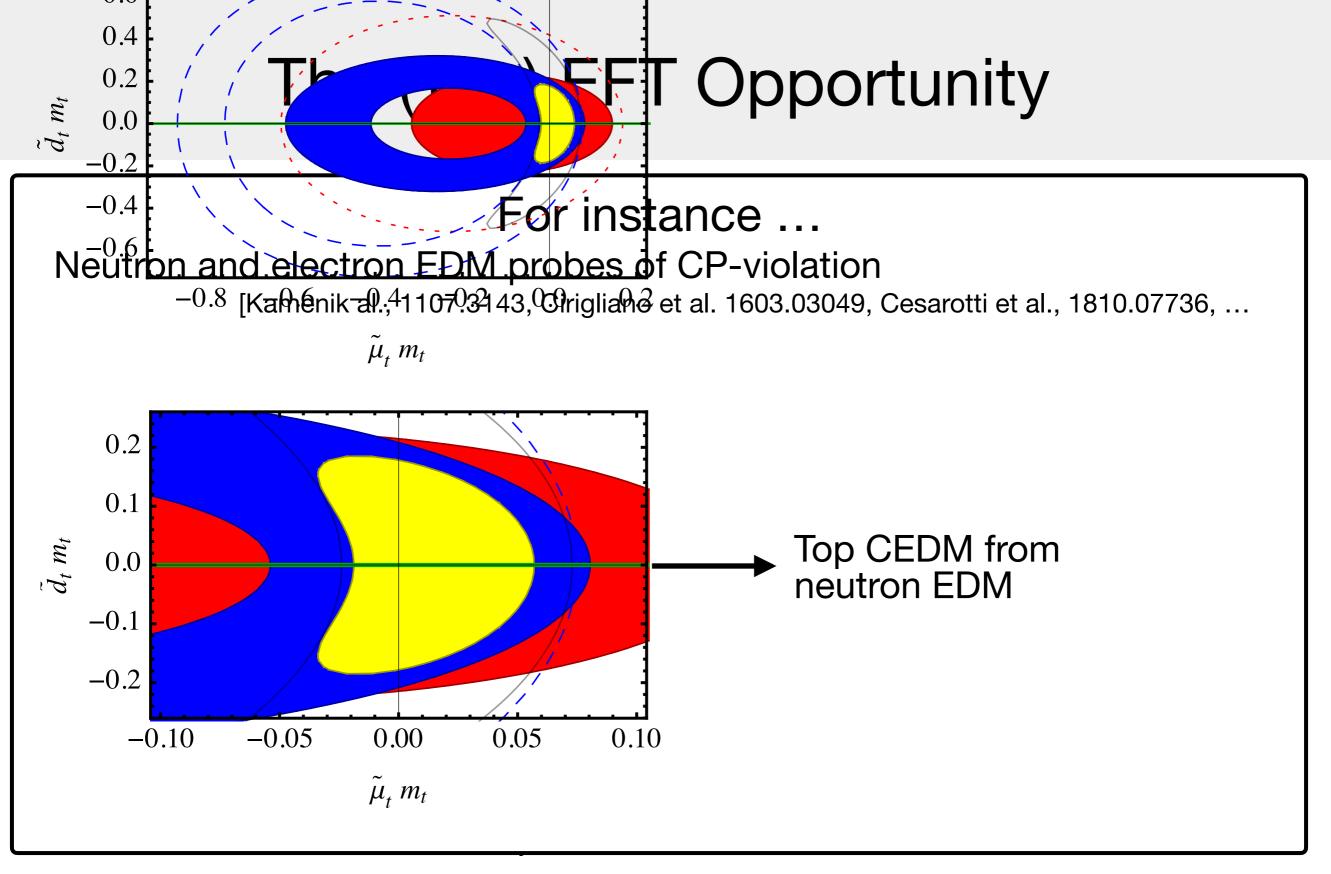
Make accurate enough predictions: of the **RIGHT** EFT-optimised observables see talks by John and Giulia

also needs EFT prediction see talks by Ilaria and Hesham

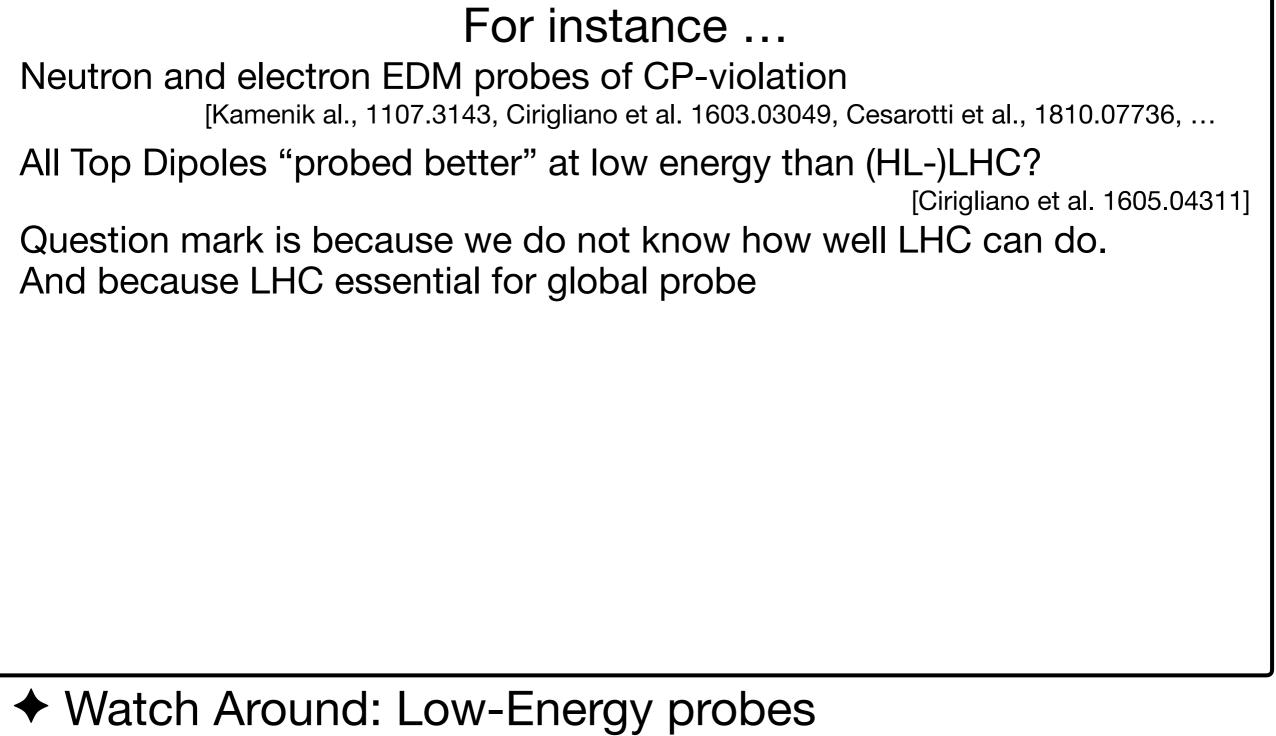
Make accurate enough measurements: of the **RIGHT** EFT-optimised observables see talks by Luca, James, Giulia, Joscha, ...

The EFT ToDo list, **unordered**: Define target interaction operators: [1802.07237] the initial target must be simple enough. E.g., top-philic EFT [1807.02441] ind best exp. probe of each op. (or op. combination): huge variety of possible measurements, and of operators the most ambitious pheno program ever! Make accurate enough predictions: of the **RIGHT** EFT-optimised observables see talks by John and Giulia also needs EFT prediction see talks by Ilaria and Hesham Make accurate enough measurements: of the **RIGHT** EFT-optimised observables see talks by Luca, James, Giulia, Joscha, ...

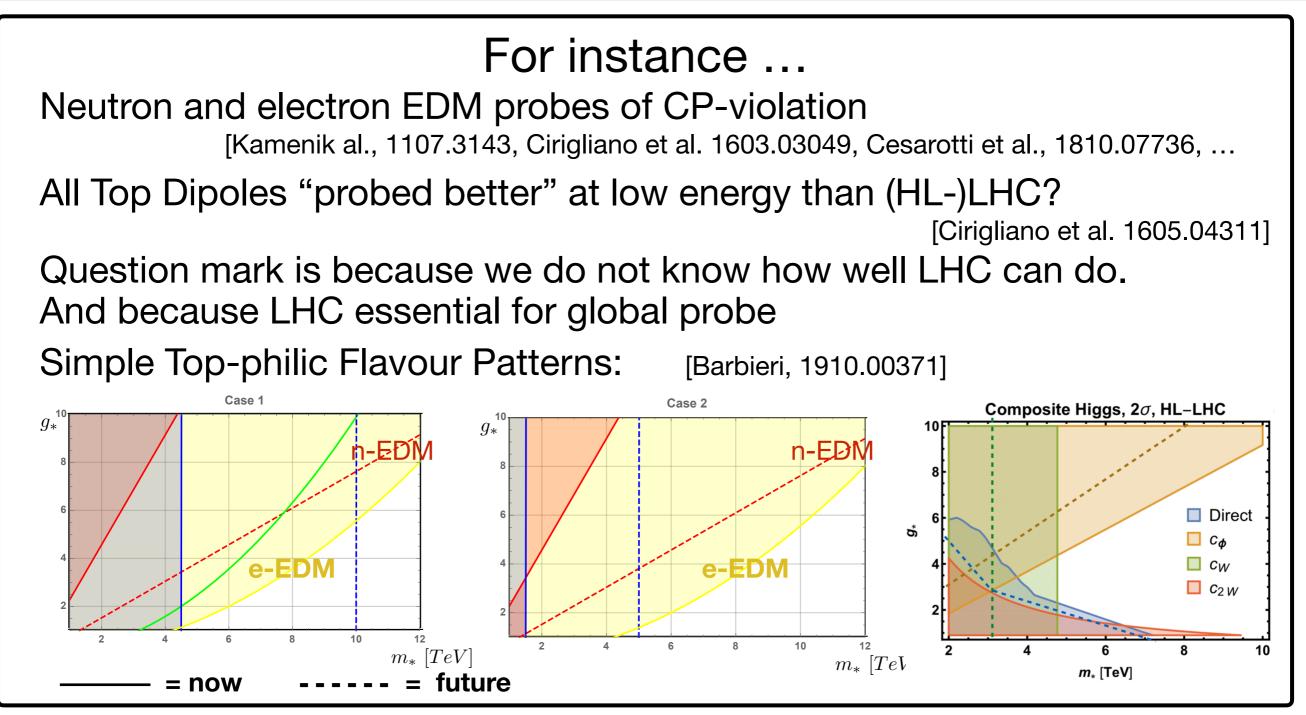
The EFT ToDo list, **unordered:**


- Define target interaction operators: [1802.07237] the initial target must be simple enough. E.g., top-philic EFT [1807.02441]
- Find best exp. probe of each op. (or op. combination): huge variety of possible measurements, and of operators

the most ambitious pheno program ever!


Make accurate enough predictions: of the RIGHT EFT-optimised observables see talks by John and Giulia also needs EFT prediction see talks by Ilaria and Hesham

Make accurate enough measurements: of the RIGHT EFT-optimised observables see talks by Luca, James, Giulia, Joscha, ...


Watch Around: Low-Energy probes offer sensitivity targets and (rarely) reasons to drop op.s from our list

 Watch Around: Low-Energy probes offer sensitivity targets and (rarely) reasons to drop op.s from our list

offer sensitivity targets and (rarely) reasons to drop op.s from our list

 Watch Around: Low-Energy probes offer sensitivity targets and (rarely) reasons to drop op.s from our list

Top properties are essential ingredients for SM predictions we must know them precisely

- Top properties are essential ingredients for SM predictions we must know them precisely
- The Top is a portal to EWSB Composite Higgs ⇒ Composite Top The 4-tR vertex opportunity

- Top properties are essential ingredients for SM predictions we must know them precisely
- The Top is a portal to EWSB Composite Higgs ⇒ Composite Top The 4-tR vertex opportunity
- The (Top) EFT
 A clear path towards top couplings characterisation

- Top properties are essential ingredients for SM predictions we must know them precisely
- The Top is a portal to EWSB Composite Higgs ⇒ Composite Top The 4-tR vertex opportunity

The (Top) EFT

A **clear** path towards top couplings characterisation A full-fledged BSM search strategy, with discovery potential

Top properties are essential ingredients for SM predictions we must know them precisely

The Top is a portal to EWSB Composite Higgs ⇒ Composite Top The 4-tR vertex opportunity

The (Top) EFT

A clear path towards top couplings characterisation A full-fledged BSM search strategy, with discovery potential Clear \neq Easy ! Needs EXP/QCD/PDF/BSM work

Thank You