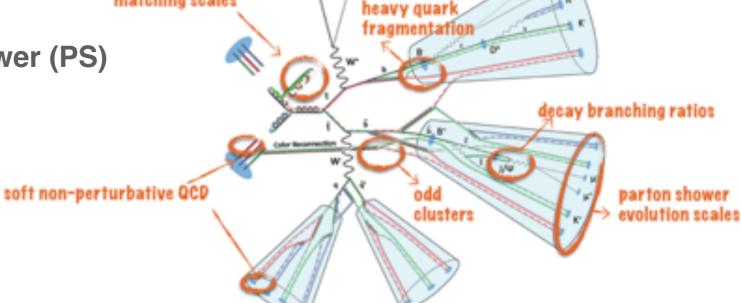




# Top Quark Modelling and Tuning in ATLAS and CMS

#### TOP2021 September 14, 2021

#### Giulia Negro on behalf of the ATLAS and CMS Collaborations


ATLAS helper: Dominic Hirschbühl



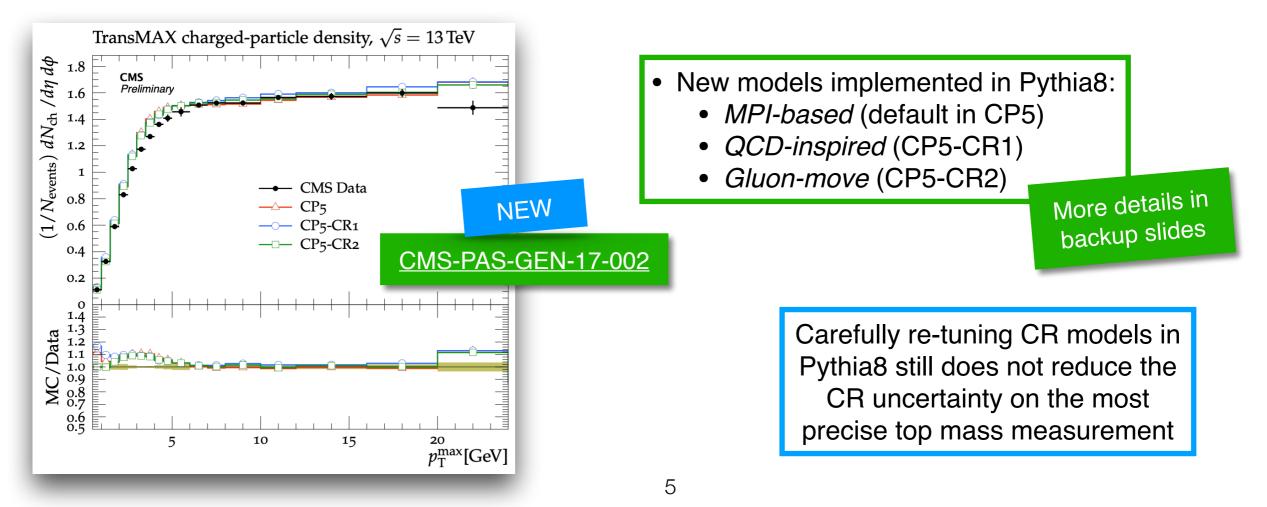


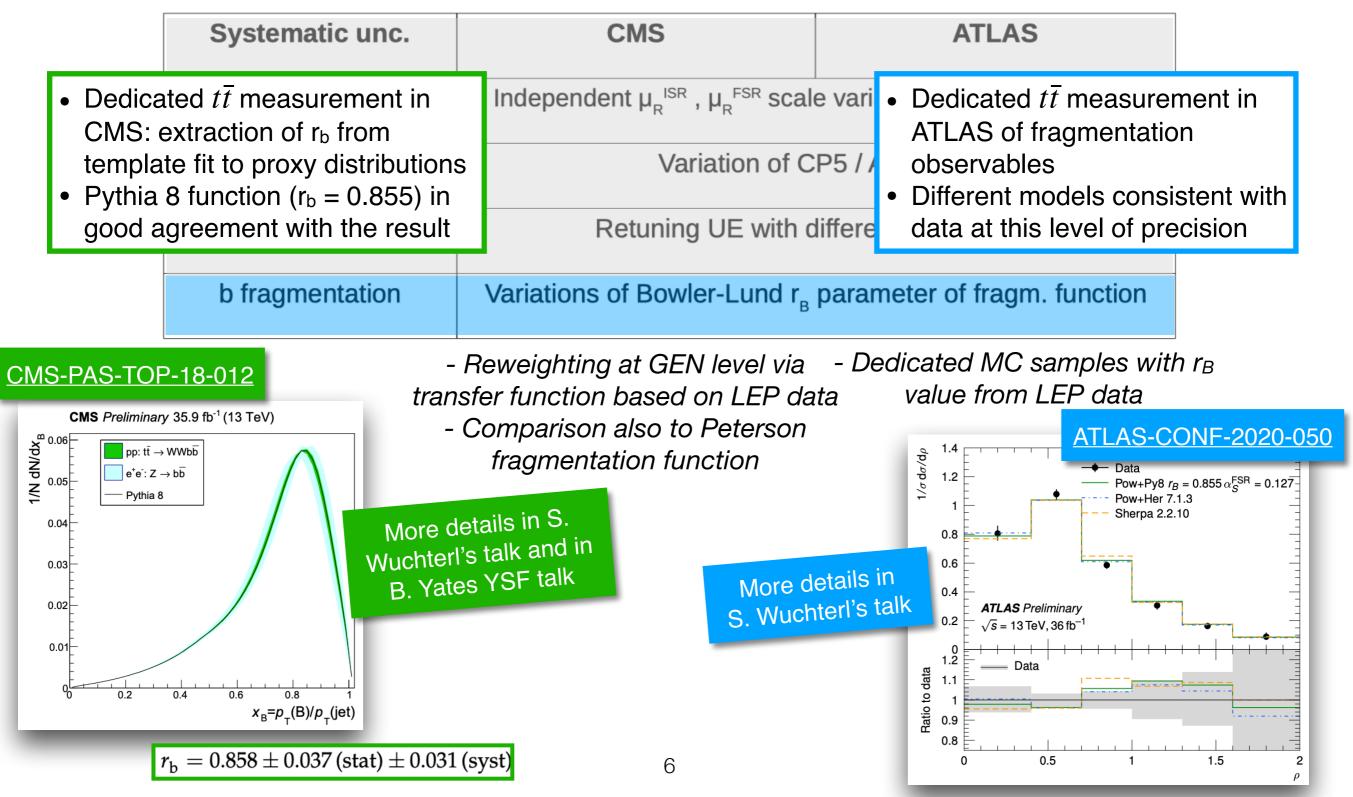
## Introduction

- MC simulation is a crucial ingredient in top quark analyses:
  - good modelling of data and high accuracy predictions for interpretations
  - well-defined (small!) uncertainties → limiting factor in many precision measurements and searches
- ATLAS and CMS use same generators but have different modelling uncertainty prescriptions:
  - understanding how to combine the differing strategies of ATLAS and CMS is critical
  - <u>LHCtopWG</u> is ideal forum to discuss how to reduce modelling systematics
- TOP groups in both experiments have 'standard' recommendations to assess uncertainties → never to be considered as fixed recipes
  - matrix-elements (ME) scale:  $\mu_R^{ME}$  and  $\mu_F^{ME}$  scale variations
  - **PDF**: usually PDF4LHC recommendations
  - top quark p<sub>T</sub> modeling and top quark mass: very analysis-dependent
  - uncertainties involving parton shower (PS) generator → next slides

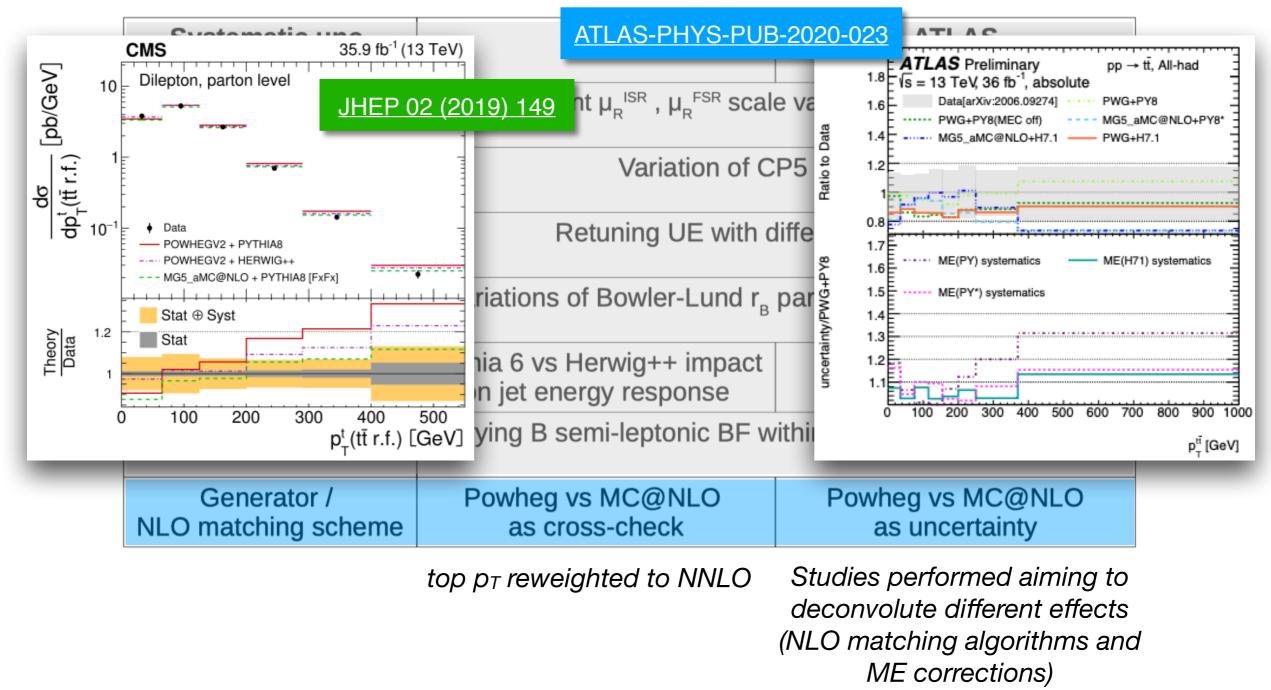


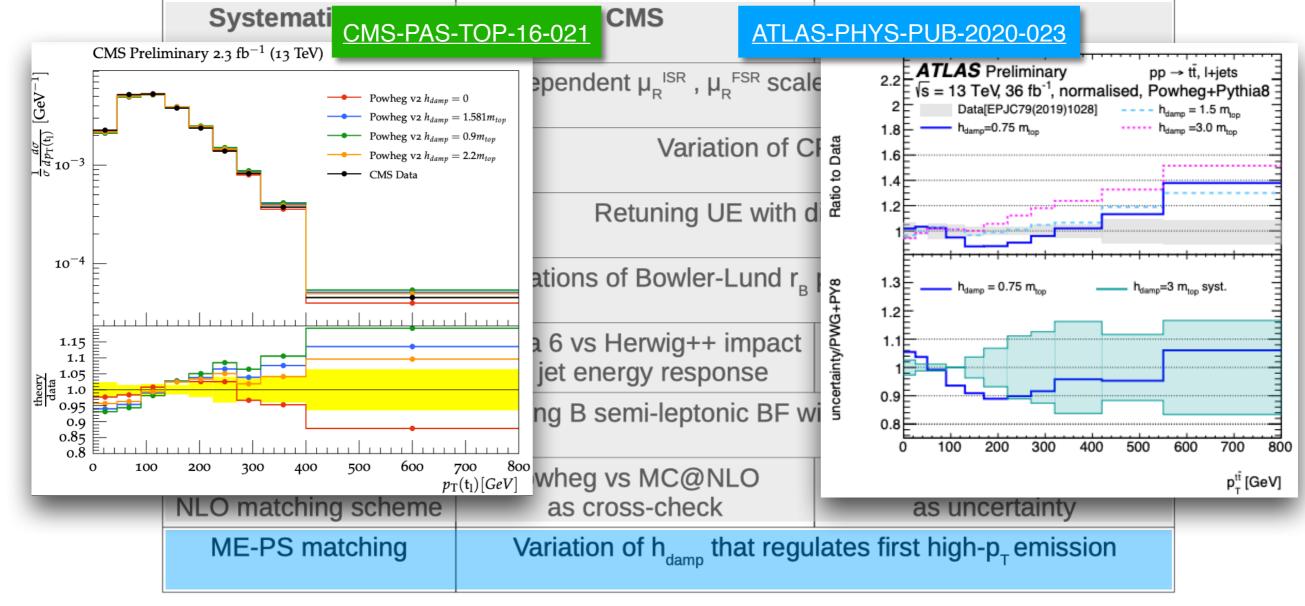
| Systematic unc. | CMS                                                 | ATLAS                            |
|-----------------|-----------------------------------------------------|----------------------------------|
| ISR and FSR     | Independent $\mu_{R}^{ISR}$ , $\mu_{R}^{FSR}$ scale | e variations with factor (2,0.5) |


Also studying decorrelated variations for each branching type  $(g \rightarrow qq, q \rightarrow qg, ...)$ 


| Systematic unc.                            | CMS                                                                                | ATLAS |  |  |
|--------------------------------------------|------------------------------------------------------------------------------------|-------|--|--|
| ISR and FSR                                | Independent $\mu_{R}^{ISR}$ , $\mu_{R}^{FSR}$ scale variations with factor (2,0.5) |       |  |  |
| UE                                         | Variation of CP5 / A14 tune                                                        |       |  |  |
| Different neremeter eet end tuning detecte |                                                                                    |       |  |  |

#### Different parameter set and tuning datasets


Eur. Phys. J. C 80 (2020) 4 JHEP 03 (2017) 157 • Different tunes in Pythia8: Jet multiplicity in tĒ events,  $\sqrt{s} = 13$  TeV • different PS  $\alpha_s$  and PDF δη δφ > [GeV] ATLAS Trans-min region  $(1/\sigma)d\sigma/dn-jet$ 0.6 1.4 orders (LO, NLO, NNLO) NHEG+PYTHIA8 CUET  $p_{-} > 0.5 \text{ GeV}, |\eta| < 2.5$  $\sqrt{s} = 13 \text{ TeV}, 1.6 \text{ nb}^{-1}$ POWHEG+PYTHIA8 CP2 0.5  $p_{-}^{lead} > 1 \text{ GeV}$ • Comparison to  $t\bar{t}$  production POWHEG+PYTHIA8 CP4  $\langle \Sigma p_{\gamma} \rangle$ POWHEG+PYTHIA8 CP5 0./ CMS Data measurement at 13 TeV: 0.3 • great agreement when merging additional NLO 0.2 – – PYTHIA 8 Monash Data MEs (FxFx) in CMS ----- PYTHIA 8 A14 --- Herwig7 0.1 – PYTHIA 8 A2 ---- Epos Model / Data 8'0 MC/Data 1.6 1.4 0.8 20 25 5 10 15 30 2 additional jets  $p_{\tau}^{\text{lead}}$  [GeV]


| Systematic unc. | CMS ATLAS                                                                          |                     |  |  |
|-----------------|------------------------------------------------------------------------------------|---------------------|--|--|
| ISR and FSR     | Independent $\mu_{R}^{ISR}$ , $\mu_{R}^{FSR}$ scale variations with factor (2,0.5) |                     |  |  |
| UE              | Variation of CP5 / A14 tune                                                        |                     |  |  |
| CR              | Retuning UE with o                                                                 | lifferent CR models |  |  |

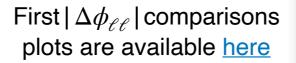


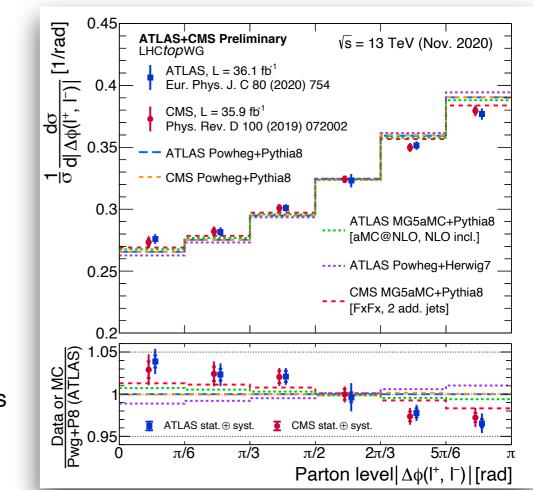


| Systematic unc.               | CMS                                                                                | ATLAS |  |  |  |
|-------------------------------|------------------------------------------------------------------------------------|-------|--|--|--|
| ISR and FSR                   | Independent $\mu_{R}^{ISR}$ , $\mu_{R}^{FSR}$ scale variations with factor (2,0.5) |       |  |  |  |
| UE                            | Variation of CP5 / A14 tune                                                        |       |  |  |  |
| CR                            | Retuning UE with different CR models                                               |       |  |  |  |
| b fragmentation               | Variations of Bowler-Lund $r_{_B}$ parameter of fragm. function                    |       |  |  |  |
| Fragmentation & hadronization | Pythia 6 vs Herwig++ impact Pythia 8 vs Herwig 7<br>on jet energy response         |       |  |  |  |
| Hadron decays                 | Varying B semi-leptonic BF within PDG value uncertainties                          |       |  |  |  |






 $h_{damp}$  (1.58  $\times$   $m_t$ ) and uncertainties from fit to leading additional jet  $p_T$   $h_{damp}$  (1.5 ×  $m_t$ ) based on data but not fitted


| Systematic unc.                    | CMS                                                                                | ATLAS                         |  |  |  |
|------------------------------------|------------------------------------------------------------------------------------|-------------------------------|--|--|--|
| ISR and FSR                        | Independent $\mu_{R}^{ISR}$ , $\mu_{R}^{FSR}$ scale variations with factor (2,0.5) |                               |  |  |  |
| UE                                 | Variation of CP5 / A14 tune                                                        |                               |  |  |  |
| CR                                 | Retuning UE with different CR models                                               |                               |  |  |  |
| b fragmentation                    | Variations of Bowler-Lund $r_{_B}$ parameter of fragm. function                    |                               |  |  |  |
| Fragmentation & hadronization      | Pythia 6 vs Herwig++ impact<br>on jet energy response                              | Pythia 8 vs Herwig 7          |  |  |  |
| Hadron decays                      | Varying B semi-leptonic BF w                                                       | ithin PDG value uncertainties |  |  |  |
| Generator /<br>NLO matching scheme | Powheg vs MC@NLO<br>as cross-checkPowheg vs MC@NL<br>as uncertainty                |                               |  |  |  |
| ME-PS matching                     | Variation of $h_{damp}$ that regulates first high-p <sub>T</sub> emission          |                               |  |  |  |

#### Common CMS-ATLAS MC samples would help greatly in understanding and comparing many of these uncertainties!

## A Top Common sample

- A *tt* sample with common settings would facilitate ATLAS-CMS combinations and comparisons:
  - could help to understand correlations of systematic uncertainties due to MC modelling
  - could remove differences in high-precision measurements (e.g. color reconnection models and parton shower / soft physics settings in top quark mass)
  - could be used as baseline prediction (e.g. for  $|\Delta \phi_{\ell\ell}|$  combination @13 TeV)
- First step towards sharing resources, for current and future generators
- Effort carried out within the <u>LHCtopWG</u>: Michael Fenton, Dominic Hirschbühl, Giulia Negro, and Reinhard Schwienhorst





## Main settings in ATLAS and CMS

- Both experiments use a similar setup for  $t\overline{t}$  simulation, POWHEG-BOX (hvq) + Pythia8, but different nominal samples
  - many parameters are different: Powheg revision & settings, Pythia8 version & settings, usage of EvtGen, etc.

| Setting name             | Setting description                                              | CMS default  | ATLAS default |
|--------------------------|------------------------------------------------------------------|--------------|---------------|
| Powheg                   |                                                                  |              |               |
| qmass                    | top-quark mass [GeV]                                             | 172.5        | 172.5         |
| twidth                   | top-quark width [GeV]                                            | 1.31         | 1.32          |
| hdamp                    | first emission damping parameter [GeV]                           | 237.8775     | 258.75        |
| wmass                    | W <sup>±</sup> mass [GeV]                                        | 80.4         | 80.3999       |
| wwidth                   | $W^{\pm}$ width [GeV]                                            | 2.141        | 2.085         |
| bmass                    | <i>b</i> -quark mass [GeV]                                       | 4.8          | 4.95          |
| Рутніа 8                 |                                                                  |              |               |
|                          | Pythia 8 version                                                 | v240         | v230          |
|                          | Tune                                                             | CP5          | A14           |
| PDF:pSet                 | LHAPDF6 parton densities to be used for proton beams             | NNPDF31_nnlo | NNPDF23_lo    |
|                          |                                                                  | _as_0118     | _as_0130_qed  |
| TimeShower:alphaSvalue   | Value of $\alpha_s$ at Z mass scale for Final State Radiation    | 0.118        | 0.127         |
| SpaceShower:alphaSvalue  | Value of $\alpha_s$ at Z mass scale for Initial State Radiation  | 0.118        | 0.127         |
| MPI:alphaSvalue          | Value of $\alpha_s$ at Z mass scale for Multi-Parton Interaction | 0.118        | 0.126         |
| MPI:pT0ref               | Reference $p_T$ scale for regularizing soft QCD emissions        | 1.41         | 2.09          |
| ColourReconnection:range | Parameter controlling colour reconnection probability            | 5.176        | 1.71          |

## **Common settings**

- "Democratic" setup (not optimized to data):
  - same Pythia tune: Monash (basis of both ATLAS and CMS tunes)
  - approximate averages for all physical parameters
  - technical parameters mainly chosen from ATLAS setup

| Setting name             | Setting description                                              | CMS default  | ATLAS default | Common Proposal |
|--------------------------|------------------------------------------------------------------|--------------|---------------|-----------------|
| Powheg                   |                                                                  |              |               |                 |
| qmass                    | top-quark mass [GeV]                                             | 172.5        | 172.5         | 172.5           |
| twidth                   | top-quark width [GeV]                                            | 1.31         | 1.32          | 1.315           |
| hdamp                    | first emission damping parameter [GeV]                           | 237.8775     | 258.75        | 250             |
| wmass                    | W <sup>±</sup> mass [GeV]                                        | 80.4         | 80.3999       | 80.4            |
| wwidth                   | $W^{\pm}$ width [GeV]                                            | 2.141        | 2.085         | 2.11            |
| bmass                    | <i>b</i> -quark mass [GeV]                                       | 4.8          | 4.95          | 4.875           |
| Рутніа 8                 |                                                                  |              |               |                 |
|                          | Pythia 8 version                                                 | v240         | v230          | v240 (CMS)      |
|                          |                                                                  |              |               | v244 (ATLAS)    |
|                          | Tune                                                             | CP5          | A14           | Monash          |
| PDF:pSet                 | LHAPDF6 parton densities to be used for proton beams             | NNPDF31_nnlo | NNPDF23_lo    | NNPDF23_lo      |
|                          |                                                                  | _as_0118     | _as_0130_qed  | _as_0130_qed    |
| TimeShower:alphaSvalue   | Value of $\alpha_s$ at Z mass scale for Final State Radiation    | 0.118        | 0.127         | 0.1365          |
| SpaceShower:alphaSvalue  | Value of $\alpha_s$ at Z mass scale for Initial State Radiation  | 0.118        | 0.127         | 0.1365          |
| MPI:alphaSvalue          | Value of $\alpha_s$ at Z mass scale for Multi-Parton Interaction | 0.118        | 0.126         | 0.130           |
| MPI:pT0ref               | Reference $p_T$ scale for regularizing soft QCD emissions        | 1.41         | 2.09          | 2.28            |
| ColourReconnection:range | Parameter controlling colour reconnection probability            | 5.176        | 1.71          | 1.80            |

## Common sample v0.1

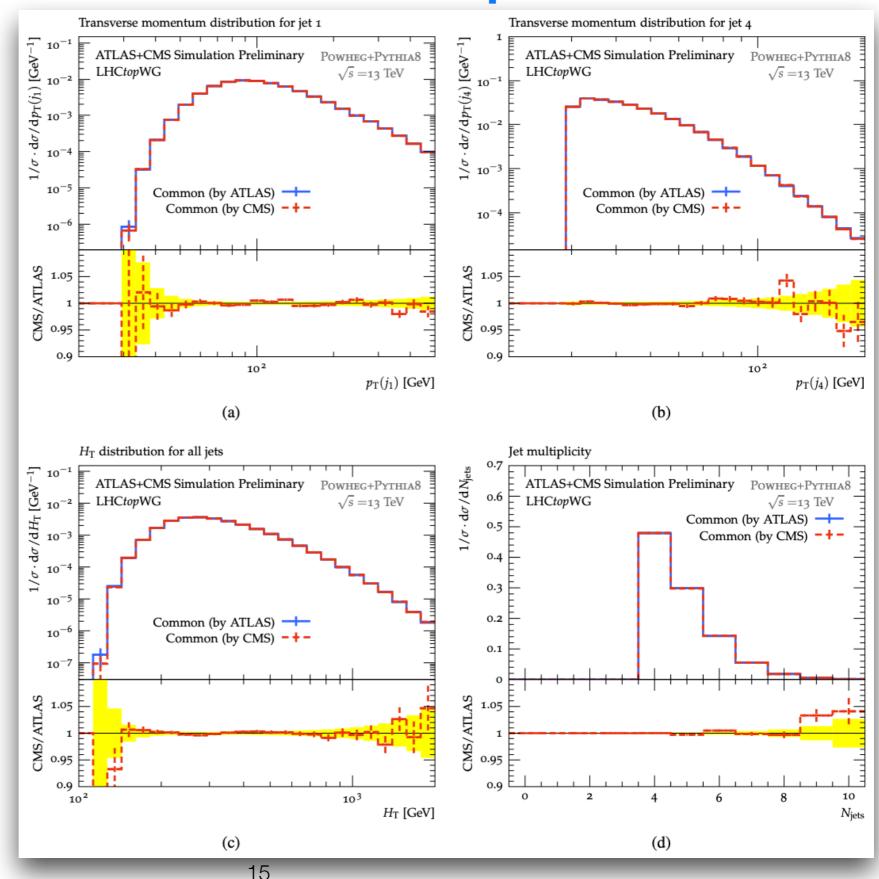
- Production of first sample with common settings (v0.1):
  - exchanged complete set of parameters
  - samples produced independently in the respective frameworks
    - LHE files produced and showered separately by each collaboration
- Focus on generating first ATLAS and CMS samples with same common settings
  - no tuning to data yet
  - no identical events expected, but overall agreement of samples
- barately
  LHCTOP NOTE

  barately
  ATL-PHYS-PUB-2021-016<br/>CMS NOTE-2021/005<br/>31st May 2021

  amples
  Towards Common tł Monte-Carlo Settings for<br/>ATLAS and CMS

  ATLAS and CMS

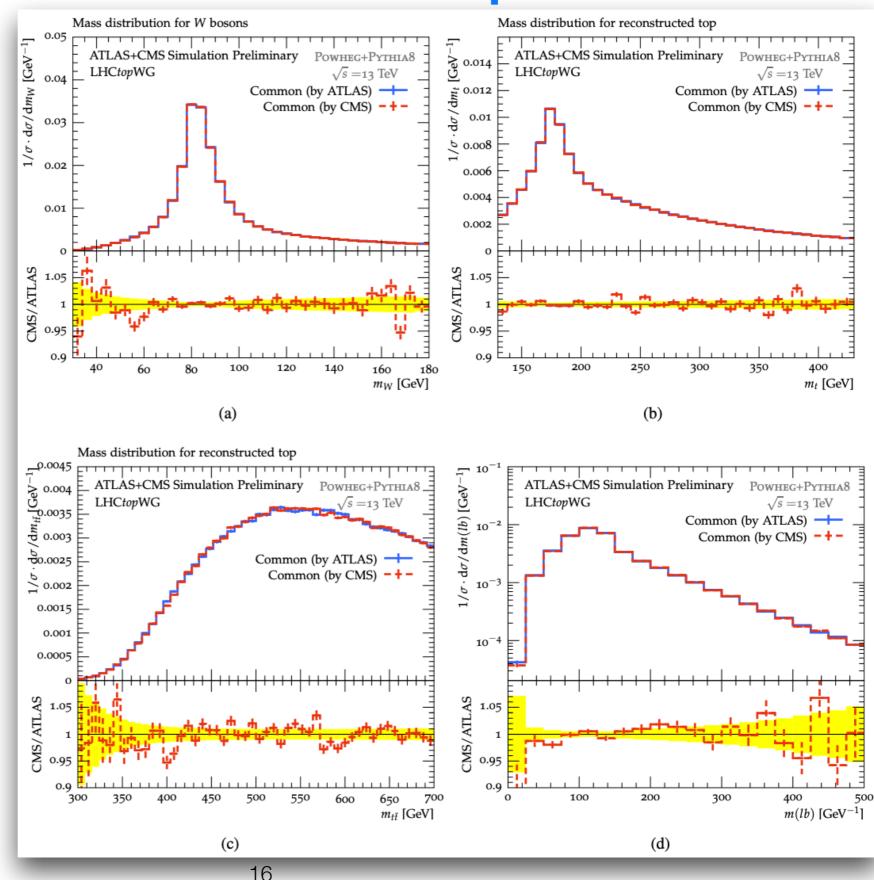
  ATLAS and CMS Collaborations


- Technical setup:
  - 10M inclusive events produced in each experiment
  - different Powheg revision but same HVQ program
  - different Pythia version (not all available in respective frameworks) → checked that results are identical
  - no usage of EvtGen
  - comparisons performed at particle level with Rivet v3.1.2 and the "MC\_TTBAR" routine ("ONELEP" mode)
- Common settings and results documented in public note

Both ATLAS and CMS use POWHEG+PYTHIA8 Monte-Carlo simulations to model the  $t\bar{t}$  process. A commonly agreed upon set of POWHEG and PYTHIA8 parameters is presented and compared to the nominal ATLAS and CMS settings. Samples generated with the different settings are compared using a publicly available Rivet routine. Comparisons are presented to demonstrate that samples produced with the Common Settings by both collaborations are in agreement with each other. Samples generated with the Common Settings can be used to compare ATLAS and CMS analyses.

#### Validation of samples

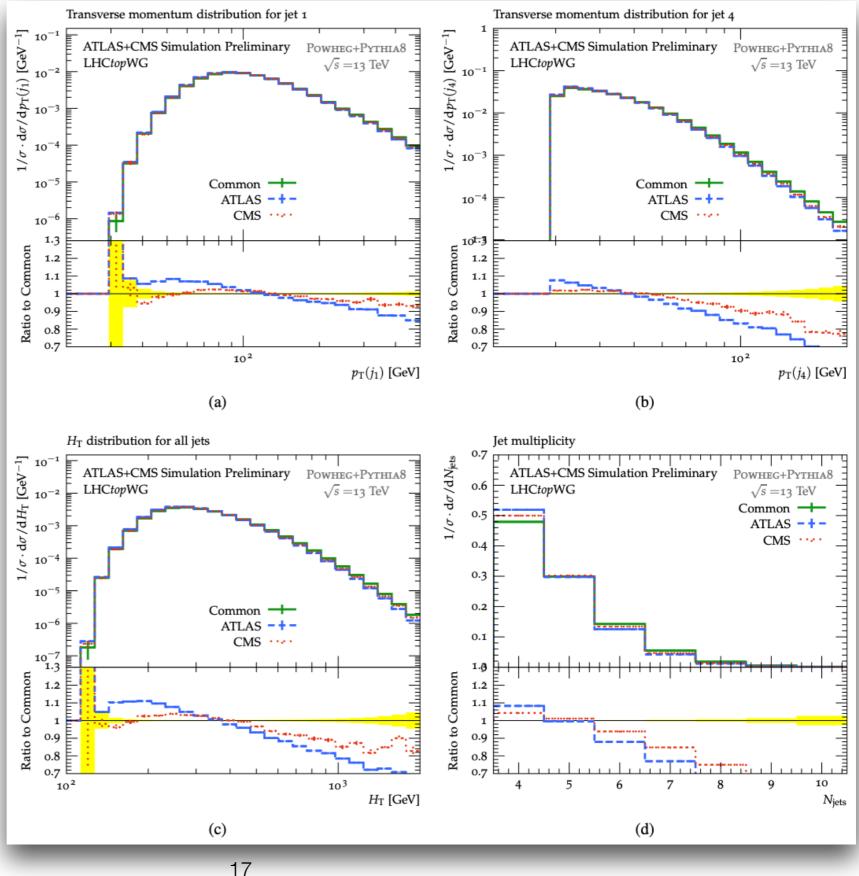
 Comparison of samples produced by both experiments using same common settings


Distributions are in perfect agreement within statistical uncertainties



## Validation of samples

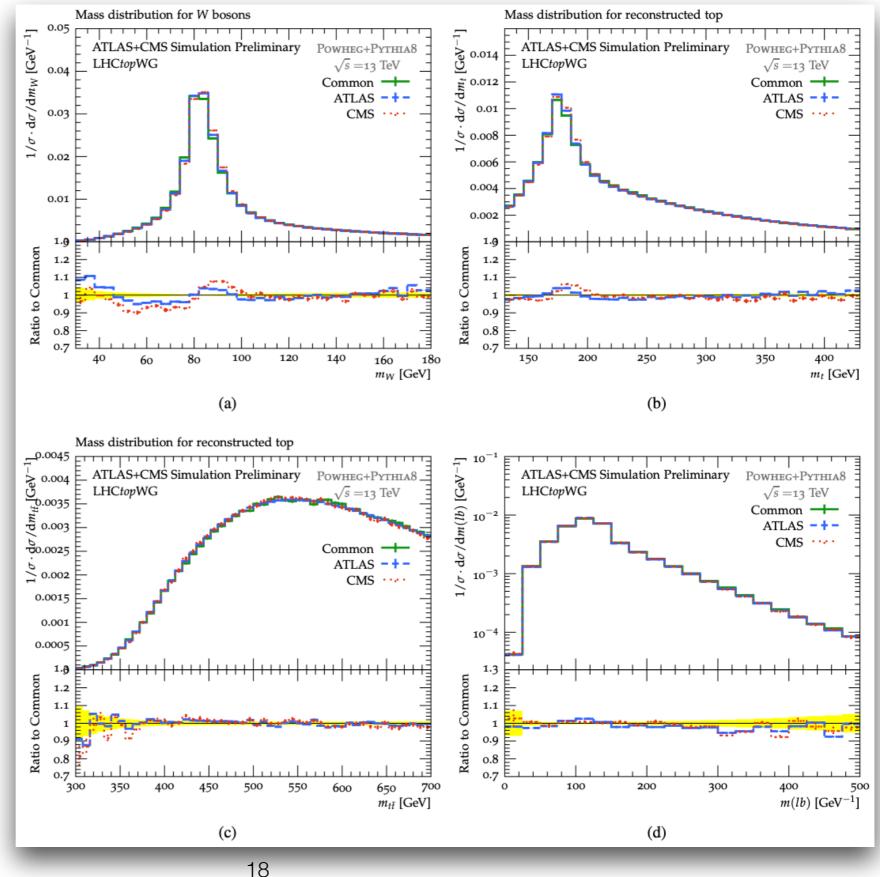
 Comparison of samples produced by both experiments using same common settings


Distributions are in perfect agreement within statistical uncertainties



#### Common vs ATLAS/CMS

- Comparisons of common settings to nominal settings of each experiment
- Difference between Common sample and ATLAS/CMS ones mainly due to different α<sub>s</sub> of the tune


ATLAS and CMS are tuned to their experimental results, while Common settings are not optimized to data



#### Common vs ATLAS/CMS

- Comparisons of common settings to nominal settings of each experiment
- Difference between Common sample and ATLAS/CMS ones mainly due to different α<sub>s</sub> of the tune

ATLAS and CMS are tuned to their experimental results, while Common settings are not optimized to data



#### Common sample v.02

- After first common sample (v0.1), first "physical" common sample (v0.2)
  - set of parameters more tuned on data
- Physics setup for v0.2:
  - Powheg and Pythia settings agreed between ATLAS and CMS experts
  - no usage of Evtgen
- Technical setup for v0.2:
  - LHE files produced by ATLAS (having more technical constraints)
  - use common LHE files, showered separately by CMS and ATLAS

## Powheg settings

• Values in v0.1 mainly averaged between ATLAS and CMS

|              |                                        |             |               | v0.1            | v0.2                             |
|--------------|----------------------------------------|-------------|---------------|-----------------|----------------------------------|
| Setting name | Setting description                    | CMS default | ATLAS default | Common Proposal | Common Proposal                  |
|              | Powneg-Box V2 svn revision             | 3728        | 3026          | 3728 (CMS)      |                                  |
|              |                                        |             |               | 3026 (ATLAS)    |                                  |
| topdecaymode | Allowed decays of the top quark        | 22222       | 22222         | 22222           |                                  |
| qmass        | top-quark mass [GeV]                   | 172.5       | 172.5         | 172.5           |                                  |
| twidth       | top-quark width [GeV]                  | 1.31        | 1.32          | 1.315           | 1.311 (PDG, $\alpha_s = 0.118$ ) |
| hdamp        | first emission damping parameter [GeV] | 237.8775    | 258.75        | 250             | -                                |
| wmass        | W <sup>±</sup> mass [GeV]              | 80.4        | 80.3999       | 80.4            |                                  |
| wwidth       | $W^{\pm}$ width [GeV]                  | 2.141       | 2.085         | 2.11            | 2.085 (PDG, EW fit)              |
| bmass        | <i>b</i> -quark mass [GeV]             | 4.8         | 4.95          | 4.875           | 5.06 (4-loop calculation)        |
| cmass        | <i>c</i> -quark mass [GeV]             | 1.5         | 1.55          | 1.525           |                                  |
| smass        | s-quark mass [GeV]                     | 0.2         | 0.5           | 0.35            |                                  |
| dmass        | d-quark mass [GeV]                     | 0.1         | 0.32          | 0.21            |                                  |
| umass        | u-quark mass [GeV]                     | 0.1         | 0.32          | 0.21            |                                  |
| taumass      | au mass [GeV]                          | 1.777       | 1.777         | 1.777           |                                  |
| mumass       | $\mu$ mass [GeV]                       | 0.1057      | 0.1057        | 0.1057          |                                  |
| emass        | e mass [GeV]                           | 0.00051     | 0.00051       | 0.00051         |                                  |
| elbranching  | W-boson electronic branching fraction  | 0.108       | 0.1082        | 0.1081          | 0.1083 (PDG, theory)             |
| sin2cabibbo  | quark mixing angle                     | 0.051       | 0.051         | 0.051           |                                  |
|              |                                        |             |               |                 | A                                |

| Setting name | Setting description                            | CMS default | ATLAS default | Common Proposal |   |
|--------------|------------------------------------------------|-------------|---------------|-----------------|---|
| bmass_lhe    | b-quark mass in GeV (for momentum reshuffling) | (5.0)       | 4.95          | 4.875           | 5 |
| cmass_lhe    | c-quark mass in GeV (for momentum reshuffling) | (1.5)       | 1.55          | 1.525           |   |

5.06 (4-loop calculation)

## Powheg-Pythia matching

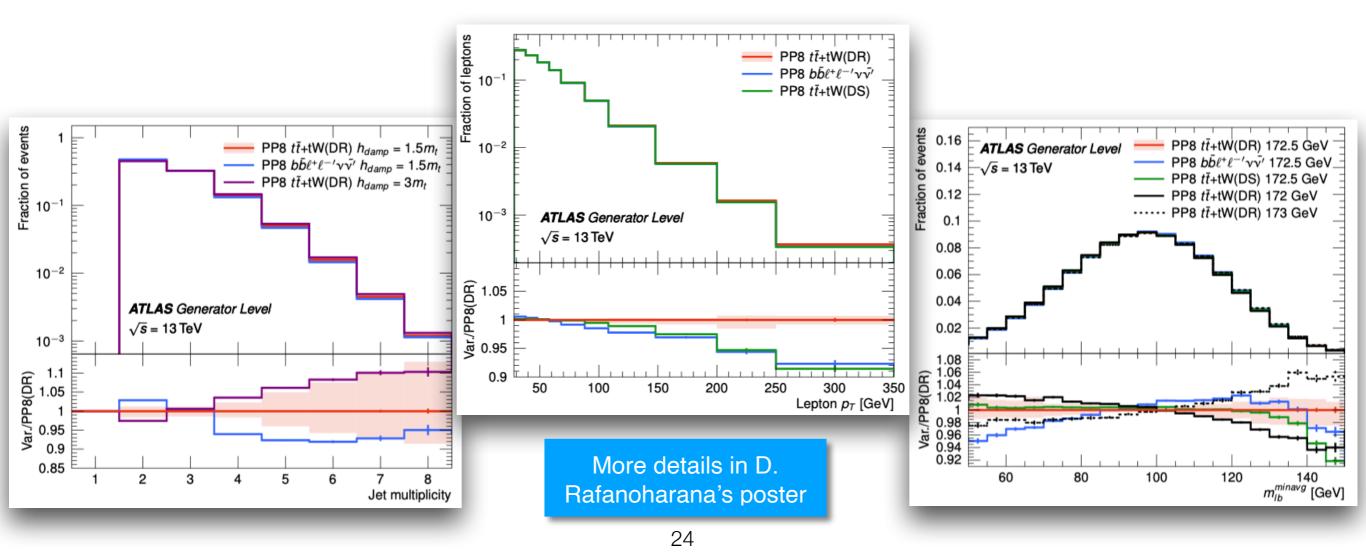
• Matching done using main31 routine

|              |                                                                       |             |               | v0.1            | v0.2            |
|--------------|-----------------------------------------------------------------------|-------------|---------------|-----------------|-----------------|
| Setting name | Setting description                                                   | CMS default | ATLAS default | Common proposal | Common Proposal |
|              | Pythia 8 version                                                      | v240        | v230          | v240 (CMS)      |                 |
|              |                                                                       |             |               | v244 (ATLAS)    |                 |
| Powheg       | Interface parameters in PYTHIA8 for matching to POWHEG                |             |               |                 |                 |
| pTdef        | Flag for hardness criterion (Powheg vs Pythia8)                       | 1           | 2             | 1               |                 |
| emitted      | Flag for defining emissions                                           | 0           | 0             | 0               |                 |
| pTemt        | Flag for which partons are used to define POWHEG hardness criteria    | 0           | 0             | 0               |                 |
| pThard       | Flag for how to calculate POWHEG hardness criteria                    | 0           | 0             | 0               |                 |
| vetoCount    | How many emissions vetoed showers checks after first allowed emission | 100         | 3             | 50              | 100             |
| nFinal       | Number of outgoing particles for born level process                   | 2           | 2             | 2               |                 |
| veto         | Flag for vetoed or unvetoed showers                                   | 1           | 1             | 1               |                 |
| MPIveto      | Flag for applying veto to Multi Parton Interactions                   | (0)         | 0             | 0               |                 |

- Common proposal for v0.2:
  - decided to use CMS values (default settings from Pythia)
- Further Powheg details
  - Main PDF:
    - NNPDF3.1 (NNPDF31\_nlo\_as\_0118)
  - Systematic weights:
    - replicas of NNPDF3.1
    - central PDF for NNPDF3.0
    - independent scale variations with 0.5 / 2.0

## Pythia settings

- Settings from Monash tune used in v0.1:
  - no good agreement between common sample and nominal ATLAS and CMS samples
- Common proposal for v0.2:
  - Monash tune + shower settings consistent with the Powheg Sudakov (Monash-CMW)
  - keep default values for other settings
  - use Pythia8 default decay tables


```
"Tune:ee = 7",
"Tune:pp = 14",
"PDF:pSet = LHAPDF6:NNPDF23_lo_as_0130_qed",
"SpaceShower:alphaSvalue = 0.118",
"SpaceShower:alphaSorder = 2",
"SpaceShower:alphaSuseCMW = on",
"TimeShower:alphaSvalue = 0.118",
"TimeShower:alphaSorder = 2",
```

- List of all settings:
  - http://www.atlas.uni-wuppertal.de/~hirsch/Pythia8\_MonashCMW.txt

#### Status and next steps

- First comparisons with v0.2 settings done:
  - much better agreement between common sample and nominal samples from ATLAS and CMS
- First comparisons of LHE files done:
  - tested that both experiments can read LHE files from the other experiment
  - LHE files with 20k events produced in both experiments
  - comparisons of weights distributions seem promising
- Production of common sample v0.2 ongoing:
  - use common LHE files produced by ATLAS
  - showering done independently in both experiments
- Comparisons at parton and particle level:
  - additional Rivet routines (MC\_PARTONICTOPS, MC\_TTBAR, MC\_FSPARTICLES)
- Comparisons to data:
  - select few Rivet routines like all-had, lepton+jets, dilepton
  - differential analyses, angular correlations, event kinematics, ISR and FSR
- Documentation of settings and results in a new PUB note
  - similar to v0.1 one but with more comparisons

- A *tt* sample including all off-shell effects (i.e. double, single and non-resonant contributions):
  - improves description of the off-shell phase space (currently modelled by tt+tW) for searches
  - provides a theoretically more solid definition of the top quark mass
  - one of the best MC setups for  $t\bar{t}$  but currently implemented only for different flavour leptons processes  $\rightarrow$  difficult to use directly in comparisons with data



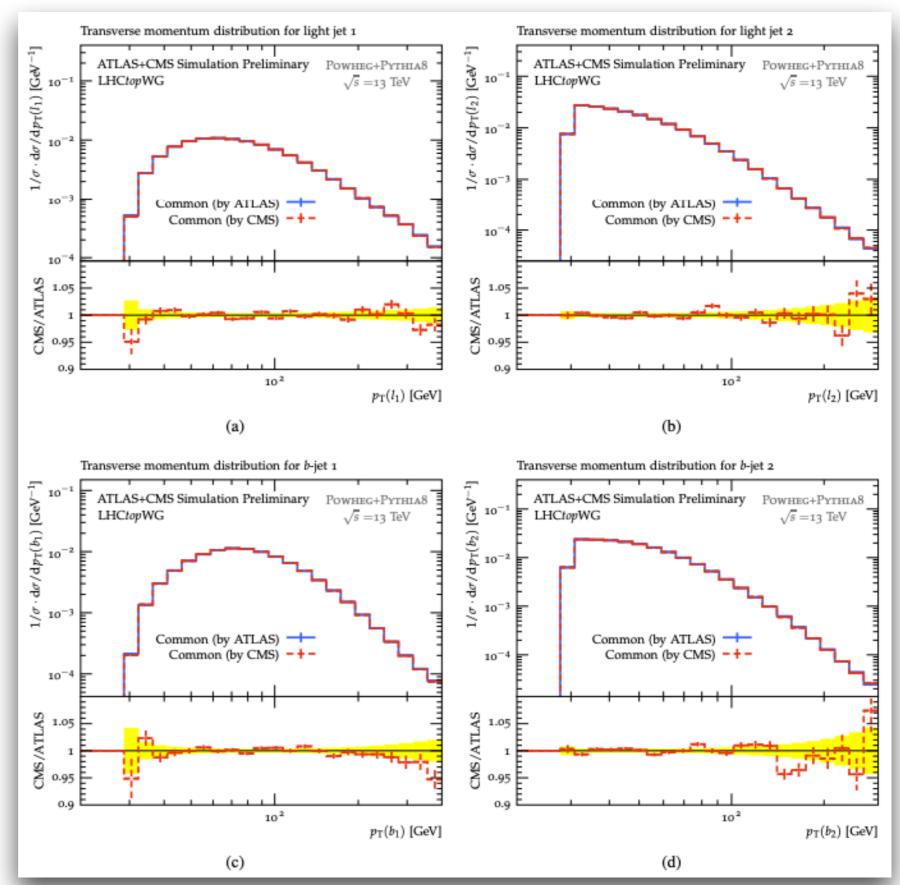
## Summary

- ATLAS and CMS have different modelling uncertainty prescriptions → a common sample would be useful to:
  - reduce modeling uncertainties
  - facilitate ATLAS + CMS combinations
- First successfully produced MC sample with common settings (v0.1)
  - exchanged full list of Powheg and Pythia8 parameters, not optimised for agreement with data
  - produced consistent samples in separate frameworks
- Production of first "physical" common sample (v0.2) ongoing:
  - agreed on v0.2 settings, more tuned to data
  - common LHE files will be showered separately in both experiments
  - documentation of settings and results in new PUB note:
    - also comparisons to data at parton and particle level
- Ultimate goal:
  - real common sample using identical events
  - common Pythia8 tuning using ATLAS and CMS data
  - sharing of resources and of prescriptions for nominal and systematic uncertainties

#### Stay tuned.. new results coming soon!

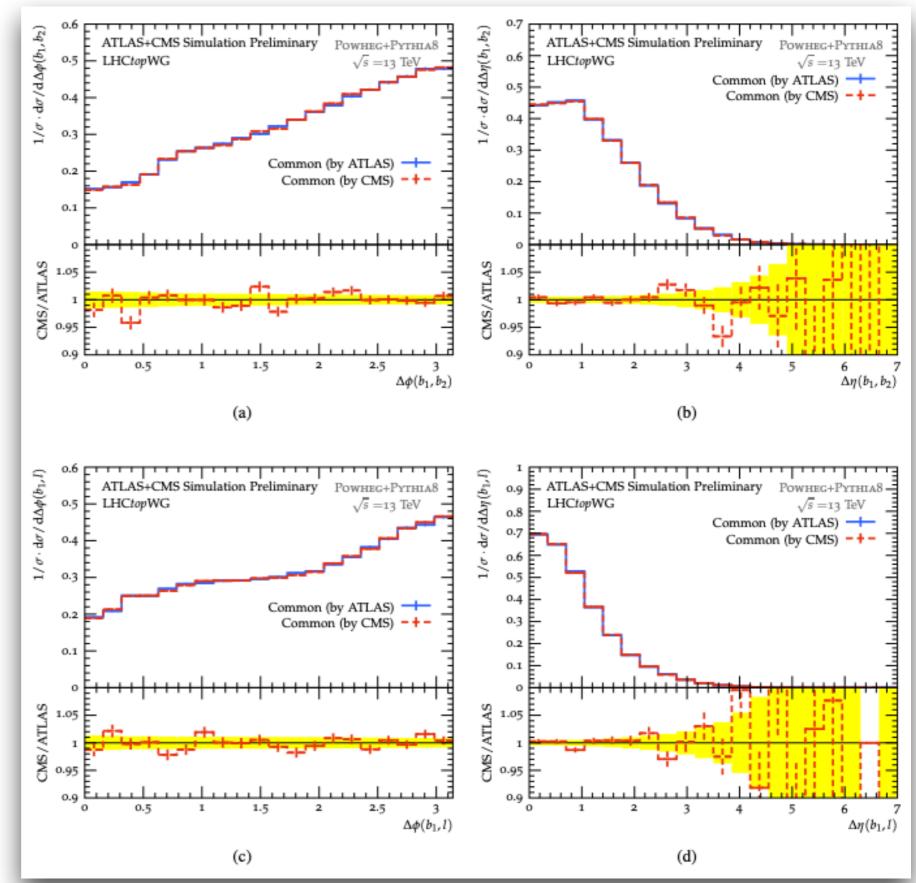


## Powheg settings


| Setting name | Setting description                    | CMS default | ATLAS default | Common Proposal |
|--------------|----------------------------------------|-------------|---------------|-----------------|
|              | Powneg-Box V2 svn revision             | 3728        | 3026          | 3728 (CMS)      |
|              |                                        |             |               | 3026 (ATLAS)    |
| topdecaymode | Allowed decays of the top quark        | 22222       | 22222         | 22222           |
| qmass        | top-quark mass [GeV]                   | 172.5       | 172.5         | 172.5           |
| twidth       | top-quark width [GeV]                  | 1.31        | 1.32          | 1.315           |
| hdamp        | first emission damping parameter [GeV] | 237.8775    | 258.75        | 250             |
| wmass        | W <sup>±</sup> mass [GeV]              | 80.4        | 80.3999       | 80.4            |
| wwidth       | $W^{\pm}$ width [GeV]                  | 2.141       | 2.085         | 2.11            |
| bmass        | <i>b</i> -quark mass [GeV]             | 4.8         | 4.95          | 4.875           |
| cmass        | c-quark mass [GeV]                     | 1.5         | 1.55          | 1.525           |
| smass        | s-quark mass [GeV]                     | 0.2         | 0.5           | 0.35            |
| dmass        | d-quark mass [GeV]                     | 0.1         | 0.32          | 0.21            |
| umass        | u-quark mass [GeV]                     | 0.1         | 0.32          | 0.21            |
| taumass      | $\tau$ mass [GeV]                      | 1.777       | 1.777         | 1.777           |
| mumass       | $\mu$ mass [GeV]                       | 0.1057      | 0.1057        | 0.1057          |
| emass        | e mass [GeV]                           | 0.00051     | 0.00051       | 0.00051         |
| elbranching  | W-boson electronic branching fraction  | 0.108       | 0.1082        | 0.1081          |
| sin2cabibbo  | quark mixing angle                     | 0.051       | 0.051         | 0.051           |

## Pythia settings

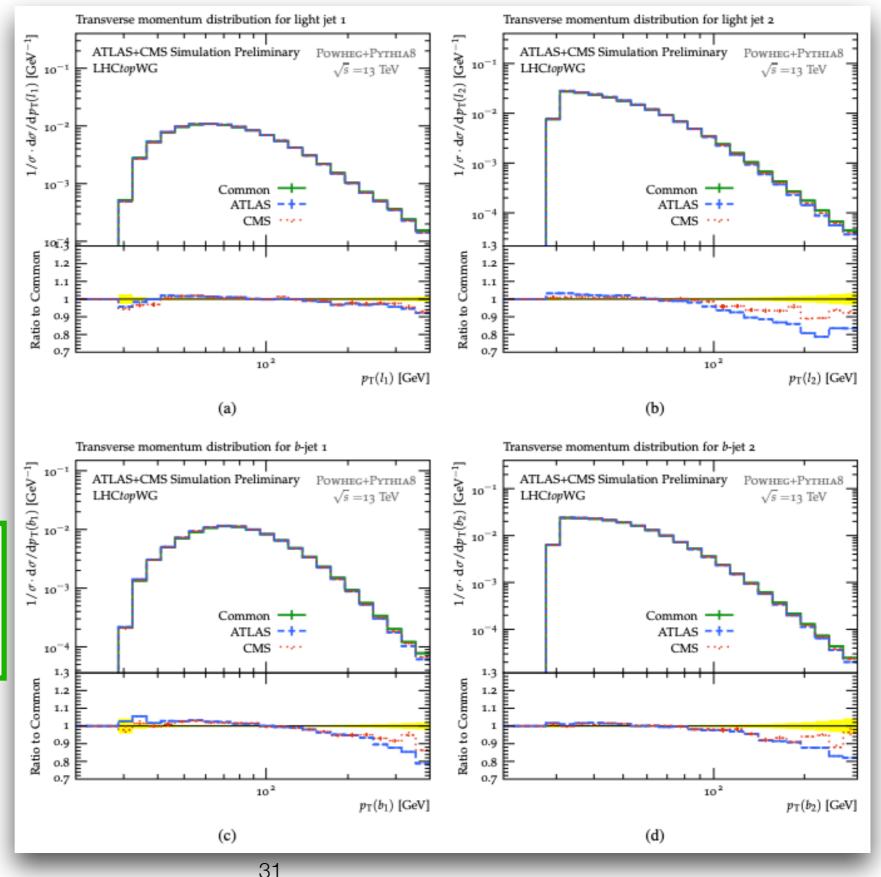
| Setting name         | Setting description                                                        | CMS default | ATLAS default | Common proposa |
|----------------------|----------------------------------------------------------------------------|-------------|---------------|----------------|
|                      | Pythia 8 version                                                           | v240        | v230          | v240 (CMS)     |
|                      |                                                                            |             |               | v244 (ATLAS)   |
| Powheg               | Interface parameters in PYTHIA8 for matching to POWHEG                     |             |               |                |
| pTdef                | Flag for hardness criterion (Powneg vs Pythia8)                            | 1           | 2             | 1              |
| emitted              | Flag for defining emissions                                                | 0           | 0             | 0              |
| pTemt                | Flag for which partons are used to define POWHEG hardness criteria         | 0           | 0             | 0              |
| pThard               | Flag for how to calculate POWHEG hardness criteria                         | 0           | 0             | 0              |
| vetoCount            | How many emissions vetoed showers checks after first allowed emission      | 100         | 3             | 50             |
| nFinal               | Number of outgoing particles for born level process                        | 2           | 2             | 2              |
| veto                 | Flag for vetoed or unvetoed showers                                        | 1           | 1             | 1              |
| MPIveto              | Flag for applying veto to Multi Parton Interactions                        | (0)         | 0             | 0              |
| TimeShower           | Final State Radiation Parameters                                           |             |               |                |
| mMaxGamma            | Maximum invariant mass for $\gamma \rightarrow f\bar{f}$                   | 1.0         | (10)          | 10             |
| alphaSorder          | Order of running for $\alpha_s$                                            | 2           | (1)           | 1              |
| alphaSvalue          | Value of $\alpha_s$ at Z mass scale                                        | 0.118       | 0.127         | 0.13650        |
| pTmaxMatch           | Flag for setting maximum shower scale algorithm                            | 2           | 2             | 2              |
| SpaceShower          | Initial State Radiation Parameters                                         |             |               |                |
| alphaSorder          | Order of running for $\alpha_s$                                            | 2           | (1)           | 1              |
| alphaSvalue          | Value of $\alpha_s$ at Z mass scale                                        | 0.118       | 0.127         | 0.1365         |
| pTmaxMatch           | Flag for setting maximum shower scale algorithm                            | 2           | 2             | 2              |
| rapidityOrder        | Force emissions to be ordered in rapidity                                  | on          | on            | on             |
| rapidityOrderMPI     | Force emissions in secondary scatterings to be ordered in rapidity         | (on)        | on            | on             |
| pT0Ref               | Reference $p_T$ scale for regularizing soft QCD emissions                  | (2)         | 1.56          | 2              |
| MPI                  | Multi-Parton Interaction Parameters                                        |             |               |                |
| alphaSorder          | Order of running for $\alpha_s$                                            | 2           | (1)           | 1              |
| alphaSvalue          | Value of $\alpha_s$ at Z mass scale                                        | 0.118       | 0.126         | 0.130          |
| ecmPow               | Exponent control kinematic dependence of pT0                               | 0.03344     | (0.215)       | 0.215          |
| bprofile             | impact parameter profile choice flag for hadron beams                      | 2           | (3)           | 3              |
| coreRadius           | Inner radius of core when using $bprofile = 2$                             | 0.7634      | (0.4)         | 0.4            |
| coreFraction         | Matter content fraction of core when using $bprofile = 2$                  | 0.63        | (0.5)         | 0.5            |
| pT0ref               | Reference $p_T$ scale for regularizing soft QCD emissions                  | 1.41        | 2.09          | 2.28           |
| BeamRemnants         | Parameters for all partons extracted from a beam                           |             |               |                |
| primordialKThard     | Parameter controlling $k_T$ of beam remnant initiators in hard-interations | (1.8)       | 1.88          | 1.8            |
| ColourReconnection   | Colour Reconnection Parameters                                             |             |               |                |
| range                | Parameter controlling colour reconnection probability                      | 5.176       | 1.71          | 1.80           |
| ParticleDecays       | Particle Decay Settings                                                    |             |               |                |
| allowPhotonRadiation | Allow photon radiation in decays to lepton pairs                           | on          | (off)         | off            |


## Validation of samples

- Comparison of samples produced by both experiments using same common settings
- Distributions are in perfect agreement within statistical uncertainties



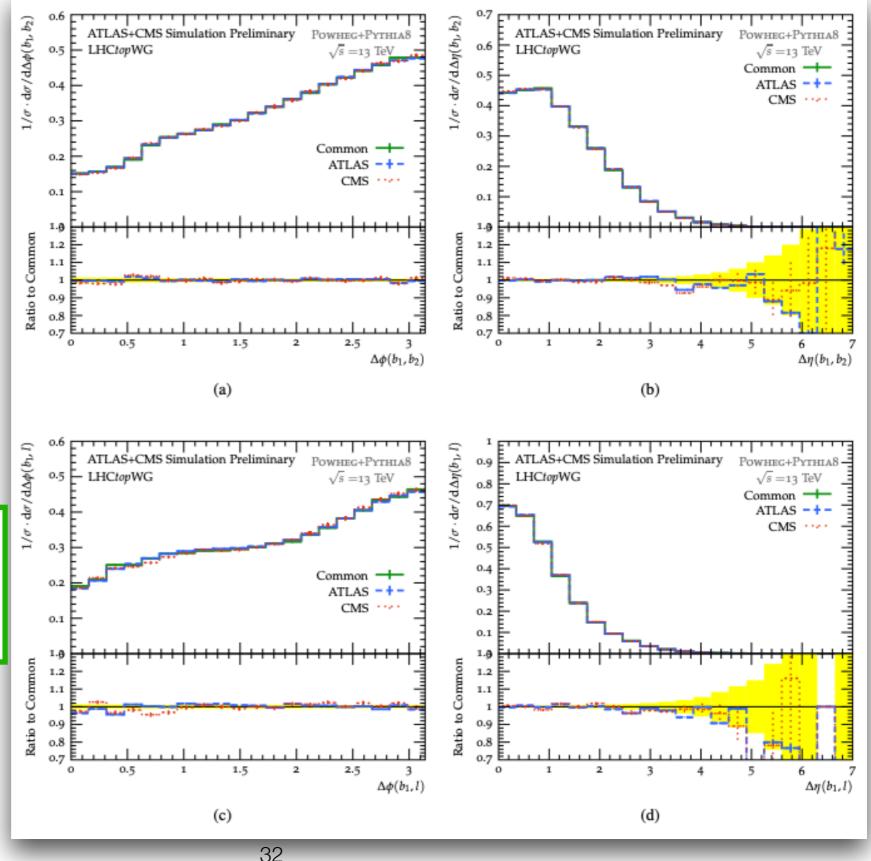
## Validation of samples


- Comparison of samples produced by both experiments using same common settings
- Distributions are in perfect agreement within statistical uncertainties

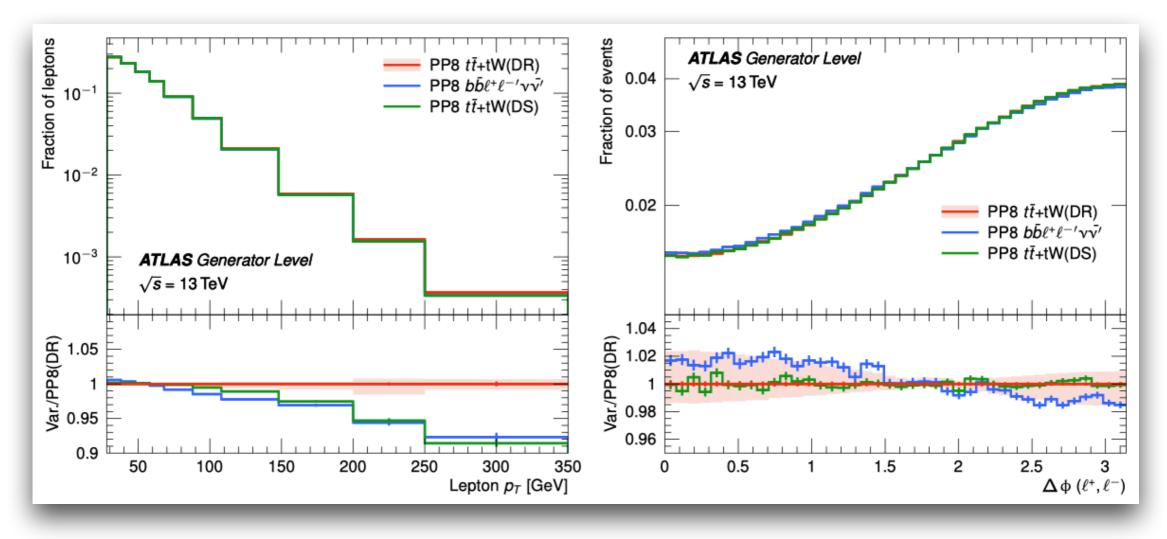


#### Common vs ATLAS/CMS

- Comparisons of common settings to nominal settings of each experiment
- Difference between Common sample and ATLAS/CMS ones mainly due to different α<sub>s</sub> of the tune


ATLAS and CMS are tuned to their experimental results, while Common settings are not optimized to data




## Common vs ATLAS/CMS

- Comparisons of common settings to nominal settings of each experiment
- Difference between Common sample and ATLAS/CMS ones mainly due to different α<sub>s</sub> of the tune

ATLAS and CMS are tuned to their experimental results, while Common settings are not optimized to data



NEW



**Figure:** Shape comparison between the sum of  $t\bar{t}$  and tW (diagram removal) distributions generated with POWHEG+PYTHIA 8 hvq (red line) and the  $b\bar{b}\ell^+\ell^-'\nu\bar{\nu}'$  sample generated with the POWHEG+PYTHIA 8 *bb*4 $\ell$  generator (blue line) and distributions generated with POWHEG+PYTHIA 8 hvq using the diagram-subtraction scheme for tW (green) for the  $p_T$  of both leptons (left) and the  $\Delta\Phi$  distribution (right). Scale variations in the matrix element and the parton shower (ISR and FSR) are combined in the red uncertainty band for the nominal  $t\bar{t}+tW$ (DR) setup. All events must have exactly one electron and one muon with opposite sign, at least two jets and exactly two *b*-tagged jets. Since same-flavour channels are not included in the *bb*4 $\ell$  event generation, the  $\tau\tau$  channel is vetoed in all samples. While the nominal  $t\bar{t}$  sample includes the spin-correlation only in an approximate way, the *bb*4 $\ell$  sample is produced with exact spin-correlations at NLO. The comparison is performed at stable particle level with  $\tau > 30$  ps. A description of the *bb*4 $\ell$  generator can be found in Eur. Phys. J. C 76, 691 (2016).

NEW

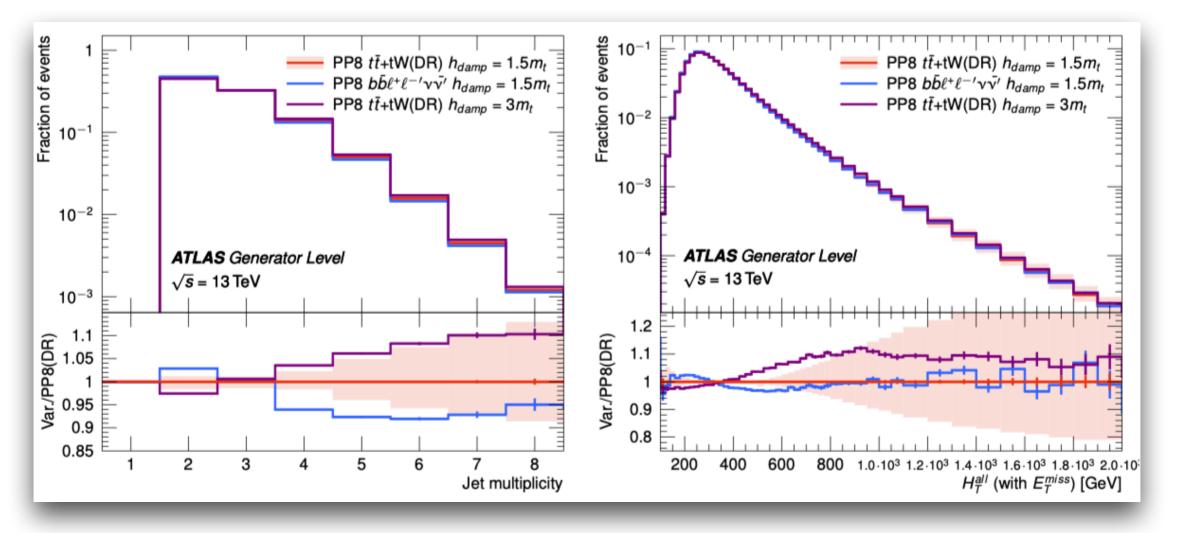
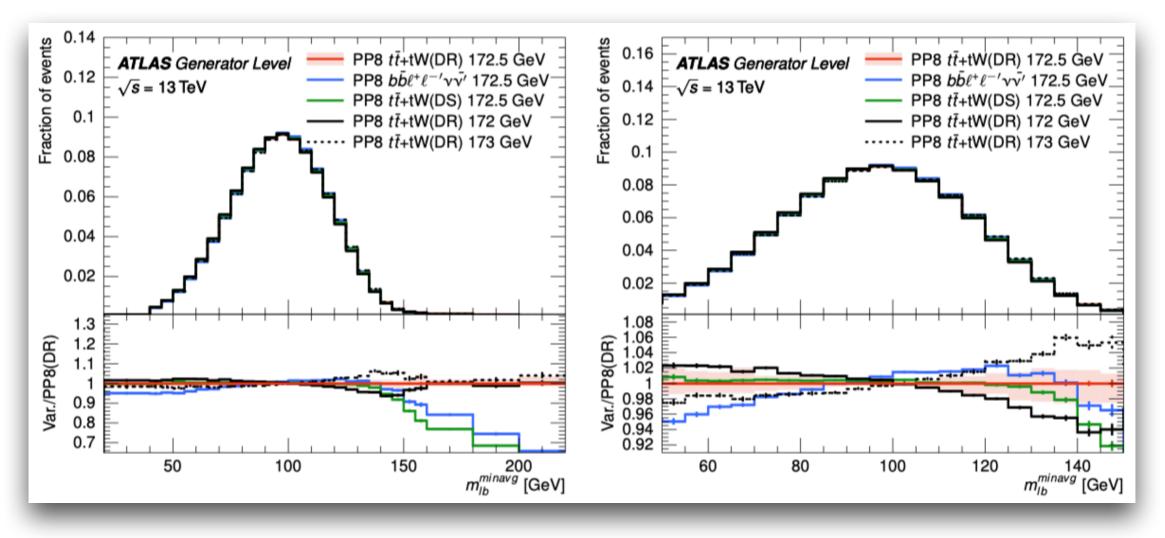




Figure: Shape comparison between the sum of  $t\bar{t}$  and tW (diagram removal) distributions generated with POWHEG+PYTHIA 8 hvq (red line) and the  $b\bar{b}\ell^+\ell^-'\nu\bar{\nu}'$  sample generated with the POWHEG+PYTHIA 8  $bb4\ell$ generator (blue line) and distributions generated with POWHEG+PYTHIA+8 hvq using a higher  $h_{damp}$  value in the  $t\bar{t}$  generation (violet) for the jet multiplicity (left) and the  $H_T$  distribution (right). Scale variations in the matrix element and the parton shower (ISR and FSR) are combined in the red uncertainty band for the  $t\bar{t}+tW(DR)$  setup. All events must have exactly one electron and one muon with opposite sign, at least two jets and exactly two *b*-tagged jets. Since same-flavour channels are not included in the  $bb4\ell$  event generation, the  $\tau\tau$ channel is vetoed in all samples.  $H_T$  is defined as the scalar sum  $p_T$  of both leptons, both b-jets and missing transverse momentum. The comparison is performed at stable particle level with  $\tau > 30$  ps. A description of the  $bb4\ell$  generator can be found in Eur. Phys. J. C 76, 691 (2016).

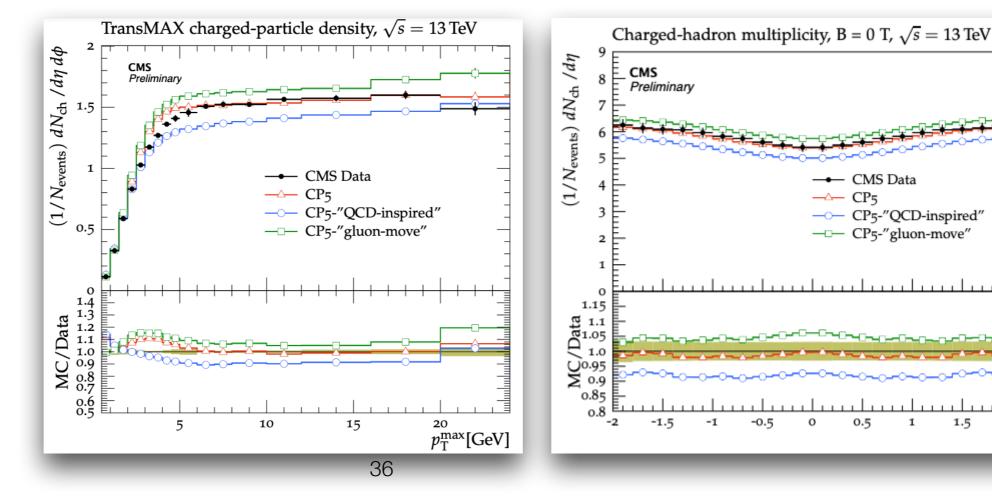
NEW



**Figure:** Shape comparison between the sum of  $t\bar{t}$  and tW (diagram removal) distributions generated with POWHEG+PYTHIA 8 hvq (red line) and the  $b\bar{b}\ell^+\ell^-'\nu\bar{\nu}'$  sample generated with the POWHEG+PYTHIA 8 bb4 $\ell$  generator (blue line) and distributions generated with POWHEG+PYTHIA 8 hvq using the diagram-subtraction scheme in the tW production, for the invariant mass of the lepton-*b*-jet combination with the lowest average  $m_{\ell b}$  value. In addition,  $t\bar{t}+tW$  samples generated with POWHEG+PYTHIA 8 hvq are shown, which have a higher/lower top-quark mass (black, 172 and 173 GeV) than the  $t\bar{t}+tW$  setup shown in red as well as the  $t\bar{t} + tW$ (DS) setup (green). All events must have exactly one electron and one muon with opposite sign, at least two jets and exactly two *b*-tagged jets. Scale variations in the matrix element and the parton shower (ISR and FSR) are combined in the red uncertainty band for the  $t\bar{t}+tW$ (DR) setup. Since same-flavour channels are not included in the  $bb4\ell$  event generation, the  $\tau\tau$  channel is vetoed in all samples. The right-hand plot shows a typical mass range used for an  $m_{top}$  measurement with the template method. The comparison is performed at stable particle level with  $\tau > 30$  ps. A description of the  $bb4\ell$  generator can be found in Eur. Phys. J. C 76, 691 (2016).

## Colour reconnection **CMS-PAS-GEN-17-002**

- Model used in default CMS Pythia8 UE tune:
  - <u>MPI-based model</u> (CP5)= simplest model with only one tunable parameter


$$P = \frac{p_{\mathrm{T}_{\mathrm{Rec}}}^2}{(p_{\mathrm{T}_{\mathrm{Rec}}}^2 + p_{\mathrm{T}}^2)}$$

 $p_{\mathrm{T}_{\mathrm{Rec}}} = R \cdot p_{\mathrm{T0}}$ , where *R* is a tunable parameter

 $\lambda = \ln(1 + \sqrt{2}\frac{E_1}{m_0}) + \ln(1 + \sqrt{2}\frac{E_2}{m_0})$ 

- New models implemented in Pythia8:
  - <u>QCD-inspired model</u> (CP5-CR1): adds the QCD colour rules on top of the minimisation of the string length
  - <u>Gluon-move model</u> (CP5-CR2): moves the final-state gluons to a string piece belonging to different colour connected partons

Tune obtained by constraining simultaneously the parameters controlling the contributions of the MPI and of the CR model

