Two-loop master integrals for the single top production associated with W boson

Ming-Ming Long
Email: heplmm@mail.ustc.edu.cn
University of Science and Technology of China
$14^{\text {TH }}$ International Workshop on Top Quark Physics, 13-17 September 2021

Introduction

- Features of top quark: heavy as a gold atom, strong Yukawa coupling, decay before hadronization.
- LHC is a top factory: $\sigma_{t \bar{t}}>\sigma_{t-\text { channel }}>\sigma_{t W}>\sigma_{s-\text { channel }}$.
- Experimental highlights of single top production: probe of $W t b$ coupling, direct extraction of $V_{t b}$, top mass measurement, search for new physics.
- Top production up to NNLO QCD, all channels are available except $t W$ mode. One of the missing ingredients [1]: two-loop four-point master integrals (MIs) for doublevirtual corrections.

Setup

Consider the partonic process below at NNLO QCD,
$g\left(p_{1}\right)+b\left(p_{2}\right) \rightarrow t\left(p_{3}\right)+W\left(p_{4}\right)$, with $p_{1,2}^{2}=0, p_{3}^{2}=m_{t}^{2}$ and $p_{4}^{2}=m_{W}^{2}$

We can identify two integral families. Family $1(\mathbf{6 0} \mathbf{~ M I s})$ includes first two diagrams. Second family ($\mathbf{3 6} \mathbf{~ M I s) ~ c o n t a i n s ~ t h e ~ l a s t ~ d i a g r a m . ~}$
Sample MIs (most complicate examples)

Differential equations

There are 80 independent MIs in total. After constructing a canonical basis [2] F , one can build its differential equations w.r.t $\mathbf{r}=\left(s, t, m_{t}^{2}, m_{W}^{2}\right.$

$$
\partial_{i} \mathbf{F}(\mathbf{r}, \epsilon)=\epsilon \mathrm{A}_{i}(\mathbf{r}) \mathbf{F}(\mathbf{r}, \epsilon)
$$

Square roots in A_{i}	Optimization $\quad d=4-2 \epsilon$ dimensions
$\begin{aligned} & \lambda_{1}=\sqrt{s\left(s-4 m_{t}^{2}\right)} \\ & \lambda_{2}=\sqrt{\left(s-m_{t}^{2}-m_{W}^{2}\right)^{2}-4 m_{t}^{2} m_{W}^{2}} \\ & \lambda_{3}=\sqrt{s\left(t-m_{t}^{2}\right)\left(s t-m_{t}^{2}\left(s+4 t-4 m_{W}^{2}\right)\right)} \end{aligned}$	- no roots: 29 MIs - $\lambda_{2}: 32 \mathrm{MIs}$ - $\lambda_{1,2}: 9 \mathrm{MIs}, \lambda_{2,3}: 4 \mathrm{MIs}$ - $\lambda_{1,2,3}: 6 \mathrm{MIs}$ Different rationalization schemes.

Solutions

By applying a suitable change of variables to every group, \mathbf{g}, according to their root
dependences, its differential equation w.r.t introduced dimensionless variables, \mathbf{x}, fulfills the $d \log$ form,

$$
d \mathbf{g}(\mathbf{x}, \epsilon)=\epsilon d \mathbb{A}(\mathbf{x}) \mathbf{g}(\mathbf{x}, \epsilon), \quad \mathbb{A}(\mathbf{x})=\sum \mathbb{C}_{i} d \log \left[\beta_{i}(\mathbf{x})\right] .
$$

Formally, the solutions to such equation can be expressed in $\dagger_{\text {kinematic space }}$ terms of a path-ordered integration,

$$
\mathbf{g}(\mathbf{x}, \epsilon)=\mathcal{P} \exp \left(\epsilon \int_{\gamma} d \mathbb{A}(\mathbf{x})\right) \mathbf{g}\left(\mathbf{x}_{0}, \epsilon\right),
$$

$$
\text { with } \mathbf{g}\left(\mathbf{x}_{0}, \epsilon\right) \text { being the values at the boundary and } \gamma \text { bein }
$$

 the path connecting \mathbf{x}_{0} and \mathbf{x} in kinematic variable space.

- x_{0}

Suppose that all MIs are normalized to be regular at $\epsilon=0$, namely

$$
\mathbf{g}(\mathbf{x}, \epsilon)=\sum_{i=0}^{\infty} \mathbf{g}^{(i)}(\mathbf{x}) \epsilon^{i}, \quad \text { regularity in these limits }
$$

whose coefficient at each order is determined by an iterative manner,

$$
\mathbf{g}^{(n)}(\mathbf{x})=\left\{\begin{array}{cl}
\mathbf{g}^{(0)}\left(\mathbf{x}_{0}\right) & n=0, \\
\mathbf{g}^{(n)}\left(\mathbf{x}_{0}\right)+\int_{\gamma} d \mathbb{A}(\mathbf{x}) \mathbf{g}^{(n-1)}(\mathbf{x}) & n>0,
\end{array}\right.
$$

evaluating to the Goncharov polylogarithms (GPLs) which are defined as

$$
G\left(w_{n}, \ldots, w_{1} ; a\right)=\int_{0}^{a} \frac{1}{t-w_{n}} G\left(w_{n-1}, \ldots, w_{1} ; t\right) d t
$$

$$
G\left(w_{1} ; a\right)=\int_{0}^{a} \frac{1}{t-w_{1}} d t w_{1} \neq 0, \quad G(\underbrace{0, \ldots, 0}_{n \text { times }} ; a)=\frac{\log ^{n}(a)}{n!} .
$$

Boundary conditions
input $\quad m_{W}=m_{t} t \rightarrow m_{W}^{2}-s \quad t \rightarrow m_{W}^{2}$

$$
\begin{array}{cccc}
26 & 1 & 1 & 6 \\
\hline m_{W} \rightarrow 0 & \lambda_{2} \rightarrow 0 & s \rightarrow\left(t-m_{t}^{2}\right)\left(m_{W}^{2}-t\right) / t
\end{array}
$$

$$
\text { boundaries } \quad m_{W} \rightarrow 0 \quad \lambda_{2} \rightarrow 0 \quad s \rightarrow\left(t-m_{t}^{2}\right)\left(m_{W}^{2}-t\right) / t
$$

Numerical validation

- Comparison with pySecDec [3] a $\mathbf{r}=(-6,-13,5,12)$ for MIs of family 1
- In left plot, being closer to th circles means better agreement
- In right plot, we define $\Delta=\mid 1$ Numerical integration/Analytical evaluation Locating at higher means better agreement.
- Numerical routines struggle to give precise values for the most complicate MIs, even at lower ϵ order

Conclusion and outlook

- Two-loop MIs (partial) for $t W$ production are calculated analytically with re sults expressed in terms of GPLs. An optimization is realized by separating MIs into groups according to their root dependences.
- Other diagrams need further investigation in the future

Reference

(1) Long-Bin Chen and Jian Wang. Analytic two-loop master integrals for the $t W$ production at hadron collides:

1. Long-Bin Chen and Jin
ARXVV:2106. 12093.
[2] Johamnes M. Henn. Multiloop integrals in dimensional regularization made simple. Phys. Rev. Lett, 110:251601, 2013.
[3] S. Borowka, G. Heimich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk, and T. Zirke. pySecDec: a toolbox for the
