

Boosted Semi Leptonic Top Tagging With Tau

Amit Chakraborty¹ <u>Amandip De</u>², Rohini M Godbole², Monoranjan Guchait³

¹SRM University AP, Amaravati,India ²Indian Institute of Science, Bangalore, India ³Tata Institute Of Fundamental Research, Mumbai, India

Motivation

- Top identification is of paramount interest; provides insight into models which address flavor hierarchies in SM fermions, naturalness problem etc.
- ◆ Any change to structure of the interaction → Change in polarization of produced top
- Hence the **polarization** of top quarks serves as a promising window for exploring the existence and nature of new physics. $\bar{t}_1 \rightarrow t \tilde{\chi}_1^0$.

$$\tilde{L} \sim \tilde{\chi_1^0} [P_L g^{t_{1L}} + P_R g^{t_{1R}}] \tilde{t_1} t_1$$

For example Higgsino like $\tilde{\chi}_0^1$: **Polarization** of t will be **opposite** to that of \tilde{t}_1 for small L-R mixing in \tilde{t}_1

- Heavy 'new particles' => SM decay products are **boosted**
- ♦ Boosted top, p_T>>m_{Top} => Products are within a **fat jet**
- In semi-leptonic decay the angular distribution of lepton \rightarrow identifier of top polarisation and τ being heavier then e/µ, its **coupling** to new physics processes could be **enhanced**.

Signal

$$\mathbf{p} \, \mathbf{p} > \mathbf{W}' > \mathbf{t} \mathbf{b} > \mathbf{\tau} \, \mathbf{v} \, \mathbf{b} ; \mathbf{W}' \text{ mass} = 1 \text{ TeV}$$
$$\mathcal{L} = \frac{V_{ij}}{2\sqrt{2}} \bar{f}_i \gamma^{\mu} (g_R(1+\gamma_5) + g_L(1-\gamma_5)) W'_{\mu} f_j + h.c$$

 $g_L = g_R = 0.5 \rightarrow \text{produced top quark is}$ unpolarized

Background

Dijet QCD: $\mathbf{p} \mathbf{p} > \mathbf{j} \mathbf{j}$ QCD requires multiple soft emissions & jet substructure depends on that. We have considered three pt bins: [200,300] [300,600] [600 - inf] whose cross section vary considerably.

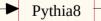
Difficulties

 Hadronic Decay => Full reconstruction of decay products => many taggers - HEP top tagger, CMS top tagger, Machine Learning based taggers..[arXiv:1902.09914]

Leptonic Decay =>

Muon: Energetic track with isolation criteria within a narrow cone [arXiv:1007.2221]

Electron: Challenging for shower shape measure in ECAL due to hadronic neighborhood [arXiv:1909.11041]


Tau: Tau decay; $B(\tau \rightarrow h\tau_v) \approx 64\%$ & leptonic $B(\tau \rightarrow l\nu_l \nu_\tau) \approx 36\%$

1/3 prong objects are identified using final-state particles reconstructed in the tracker and in the calorimeters, both ECAL and HCAL. Suffers from large backgrounds from jet production.

• We propose a dedicated tagger for the top jets with tau.

Jet formation

Madgraph

- ► Delphes (CMS card)
- Anti- K_{T} jets of radius 1.5 ; Jet $p_{T} > 200 \text{ GeV}$
- **Soft Drop** with $\mathbf{z}_{cut} = 0.1 \& \beta = 0.0$ This helps to clean the jet for both soft and soft-colliner emissions:
- Cleaned jets constituents are again re-clustered to smaller subjets of size R = 0.5 using anti-K_T

amandipde@iisc.ac.in

14th International Workshop on Top Quark Physics (TOP2021)

Tagging Algorithms

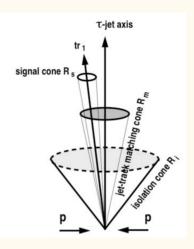
Discriminators

τ-tagging

 τ decay produces localized energy deposit in the EM and hadronic calorimeter in a ring around the core of the jet.

Charged tracks based algorithm

Collect tracks in $R_m = 0.1$ along jet axis with $p_T > 2 \text{ GeV}$

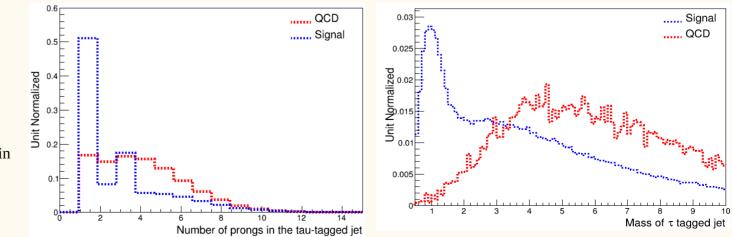

Leading track (tr₁) in R_m^{\checkmark} with $p_T > 6$ GeV; $|\eta| < 2.5$

Signal tracks: any other tracks along tr₁ in $R_s=0.07 \& |dz| < 2 mm$

```
Isolation tracks: reconstructed tracks in R_i = 0.45 \& p_T > 1 \text{ GeV}
```

Signal tracks = # Isolated tracks

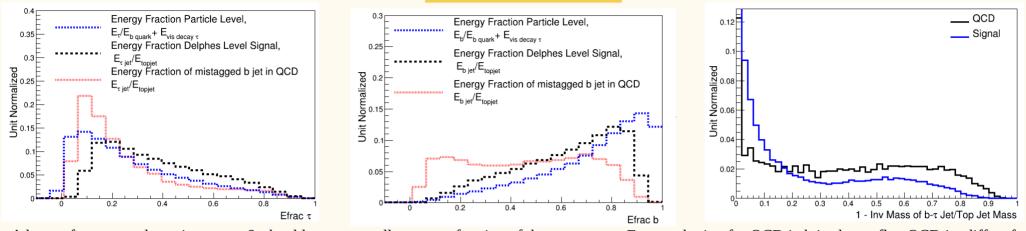
• The **efficiency** of the algorithm is ~ 57%.


b-tagging

- b jets are identified on the basis of hadronization of heavy flavour quarks.
- A jet is tagged as a b-jet if the angular distance between the jet and the nearest B-hadron satisfy ∆R(jet, hadron) < 0.5
- These hadrons for signal are coming from decay of W' and top quark. And for QCD, fragmentation and radiation of the QCD partons.
- We use the following b-tagging efficiencies for different jet p_T [arXiv:1907.05120]

p_T of the b-jet (GeV)	b tagging Efficiency
upto 60	60 %
[60,200]	80 %
[200,400]	60 %
400-	50 %

Tau prong & Mass


- The distribution of charged tracks → clear enhancement in 1 & 3 prong for signal.
- Mass reconstruction is performed using tracks and Ecal clusters. Due to multiple scatterings in QCD event, the mass shows a longer tail than signal.

amandipde@iisc.ac.in

14th International Workshop on Top Quark Physics (TOP2021)

Energy Fractions

A lepton from a top decay is prompt & should carry a smaller energy fraction of the top system. Energy sharing for QCD in b is almost flat. QCD jet differs from the boosted top jet in the prompt shower where initial splitting is rather soft for QCD and relatively hard for top jet \rightarrow large subjet multiplicity because of soft singularities in region with small E. A better estimator of energy flow would be ratio of jet masses: 1 – Invariant mass of b-tau jet/ Fatjet Mass

Subjettiness

.0.01 0.02

0.01

τ_/τ

 $m_{b\tau_{vis}} < \sqrt{m_t^2 - m_W^2}$ Advantage of different energy flow in decay pattern of top jets and q/g QCD jets, N-subjetiness: For a gen level b-tau system = 154.6 GeV. The interesting mass window is [60,150] GeV $d_0 = \sum_k p_{T,k} R_0$ $\Delta R_{J,k} = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ $\tau_N = \frac{1}{d_0} \sum_{r} p_{T,k} \min \left\{ \Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k} \right\}$ Signal Invarint mass of Gen b & tau QCD 0.05 0.16 Invariant mass of b-tau jet: Signal Outi Normalized ₽ 0.06 0.06 Invariant mass of alize b-tau iet: QCD 0.05 0.1 Norr 0.04

 τ_2/τ_2

150

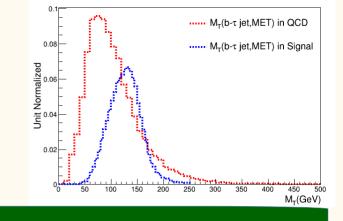
200

Invariant Mass (GeV)

100

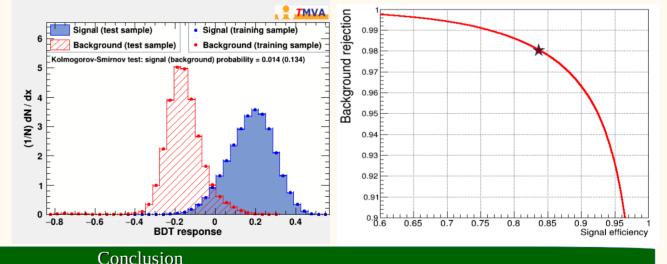
b-tau jet invariant mass

14th International Workshop on Top Quark Physics (TOP2021)


0.04

amandipde@iisc.ac.in

0.01


Transverse Mass

- Top transverse mass is defined as $\sqrt{m_{bl}^2 + 2(E_{bl}^T p_{nu}^T p_{nu}^T p_{bl}^T \cos \Delta \phi)}$
- ◆ Here two direct sources of neutrino from w and tau → difficult to configure MET. So traditional sTransverse mass observable will not provide the required information.
- The direction of MET is more co-linear to tau than b, since v decays from a boosted W and a tau is expected to be inclined to tau decay plane. For QCD the Δφ(MET & τ) is random, as there is no intrinsic correlation between them.

- A **multivariate** analysis is performed in order to maximize signal efficiency and background rejection with the discriminators mentioned before.
- Sufficient samples have been generated for training and testing for luminosity of 10 fb⁻¹.
- For comparison tagging semi-leptonic decay of Top to electron [arxiv:1909.11014] projects Signal eff,
 > 75%, at 1% mistag rate.

Performance

We summarized the boosted leptonic top tagging performance in tau decay and discussed a few important discriminators to reject QCD background.

- The efficiency is **at par** with the already established boosted leptonic top tagging methods with e/µ.
- The focus is on characteristics rather than reconstructing top mass so that it can be applied to other scenarios like ttbar.
- One more application could be identifying the LEPTO-QUARKS where a third generation leptoquark (mass ~ TeV) decays to b and tau. So in general a Fatjet with b & tau in it can have a fair probability of identification.

amandipde@iisc.ac.in

14th International Workshop on Top Quark Physics (TOP2021)