Theory challenges and issues in SMEFT fits

Ilaria Brivio

ITP Heidelberg

SMEFT global analyses @LHC

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^3} \mathcal{L}_7 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots$$

describes new physics \blacktriangleright nearly decoupled $\Lambda \gg v, E$ \blacktriangleright matching onto $SM \ fields +$ symmetries

Goalsmeasure as many SMEFT parameters as possible.find evidence for NP $C_i \neq 0$ and hints about its naturewhich C_i ?

Needs

1. being sensitive to indirect BSM effects

in bulk
$$\sim \frac{v^2}{\Lambda^2} \rightarrow 1.5\%$$
 on tails $\sim \frac{E^2}{\Lambda^2} \rightarrow 10\%$

2. making sure that, if we observe one, we interpret it correctly

~ Ken's talk

SMEFT global analyses @LHC

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^3} \mathcal{L}_7 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots$$

describes new physics \blacktriangleright nearly decoupled $\Lambda \gg v, E$ \blacktriangleright matching onto $SM \ fields +$ symmetries

Goalsmeasure as many SMEFT parameters as possible.find evidence for NP $C_i \neq 0$ and hints about its naturewhich C_i ?

Needs

1. being sensitive to indirect BSM effects

in bulk
$$\sim \frac{v^2}{\Lambda^2} \rightarrow 1.5\%$$
 on tails $\sim \frac{E^2}{\Lambda^2} \rightarrow 10\%$

2. making sure that, if we observe one, we interpret it correctly <

~ Ken's talk

Theory challenges

minimize bias and maximize reinterpretability

Many parameters

- retaining <u>all</u> relevant contributions NLO, higher orders, SMEFT in PDFs...
- correct understanding of uncertainties and correlations
- correct mapping to BSM models

Many measurements

combining is crucial

remove flat directions, ensure basis independence...

larger and larger combinations. eventually across exp and sectors.

LEP + EW + Higgs + top + LHCb + non-LHC flavor + ...

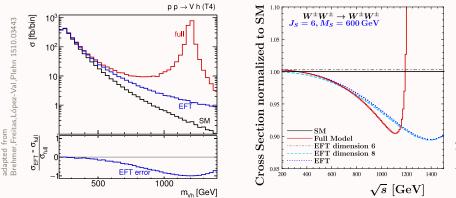
- \rightarrow different E scales
- \rightarrow complementary components of theory structure (EWSB, flavor,...)

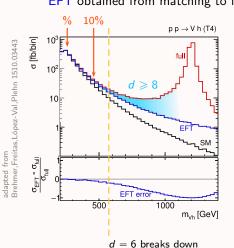
Ilaria Brivio (ITP Heidelberg)

Many issues already solved / under control

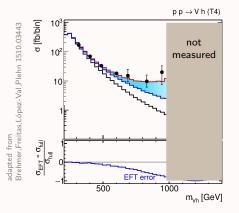
- common conventions for bases, tools for translation
- consistent formulation with/without flavor symmetries
- correct treatment of input parameters
- LO predictions fully automated (any operator in any process), NLO QCD to a good extent
- understanding of NLO EW improved substantially
- 1-loop RGE running well understood and automated
- 1-loop matching to BSM models automated
- 1-loop matching to LEFT/WET
- 🗹 good understanding of measurements' constraining power
- $oldsymbol{arsigma}$ global analyses with up to \sim 30 free parameters
- strategies to handle unconstrained directions (PCA) and understand fit structure (Fisher info)

Theory issues for the (near) future


(those that fit in today's talk)

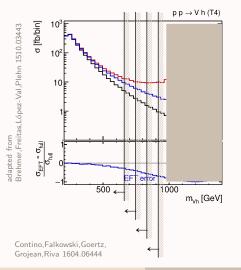

EFT validity, interpretation in terms of BSM models

- impact of higher orders in EFT
- which EFT?
- which terms are relevant?
- RG mixing effects
- matching scale uncertainties



EFT obtained from matching to full model

EFT obtained from matching to full model

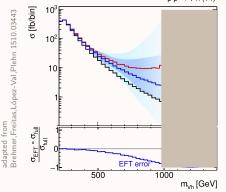


top-down: C_i fixed by matching \rightarrow EFT not valid in high-E region

bottom-up: fit C_i to data tends to make EFT match full result \rightarrow find wrong values of C_i

how to keep this into account?

EFT WG: note, comments meetings 1, 2



A sliding upper-cut

- \rightarrow C-fit changes with the cut
- \rightarrow choose *a posteriori* which limit applies
- \rightarrow can be easily un-done

\$\bar{V}\$ how to choose the E variable to cut?
\$\bar{V}\$ how to cut consistently across processes?
\$\bar{V}\$ throwing away information?

EFT WG: note, comments meetings 1, 2

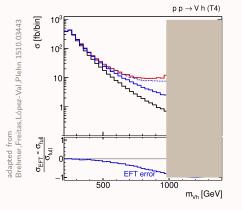
(Berthier), Trott 1508.05060,2106.13794 Hays, Martin, Sanz, Setford 1808.00442 Alte, König, Shepherd 1812.07575 Keilmann, Shepherd 1907.13160 Hays, Helset, Martin, Trott 2007.00565

$p p \rightarrow V h (T4)$

B error band

- \rightarrow C-fit consistent within uncertainties
- \rightarrow damps impact of high-E bins

$$a$$
 how to choose the E variable?
($d = 6$)² as proxy or full ($d = 8$)


- \mathbf{V} how to determine growth? benchmark Λ , prior on # and values of $C_i^{(8)}$
- $\ensuremath{\mathbb{Q}}$ embedded in measurement. hard to undo

Ilaria Brivio (ITP Heidelberg)

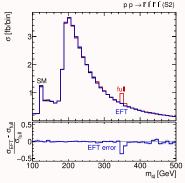
Theory challenges and issues in SMEFT fits

C

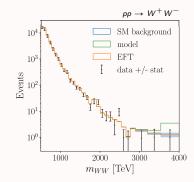
EFT WG: note, comments meetings 1, 2

C just add d=8 to the fit

- \rightarrow extends validity range
- \rightarrow helps determining the correct range for d=6
- $\mathbf{\nabla} d = 8$ prohibitive for some processes (no automation in sight)
- $\mathbf{\nabla}$ just moving the problem up?


Boughezal, Mereghetti, Petriello 2106.05337

Ilaria Brivio (ITP Heidelberg)

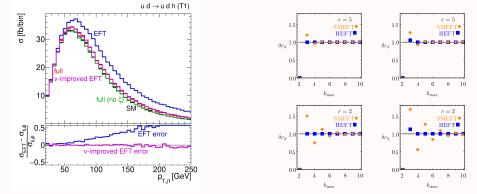

safe scenarios \leftrightarrow no energy growth \leftrightarrow small effects

typical cases where d = 6 works well across the whole visible spectrum:

- observables w/o E dependence $(1 \rightarrow 2 \text{ decays})$
- BSM scenarios with very narrow and/or heavy states

adapted from Brehmer, Freitas, López-Val, Plehn 1510.03443

Brivio, Bruggisser, Geoffray, Kilian, Krämer, Luchmann, Plehn, Summ 2108.01094

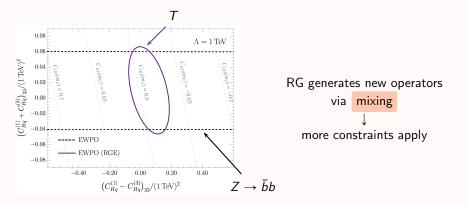

price to pay: % effects only \rightarrow most sensitivity from <u>lowest error</u> region (\sim bulk)

Ilaria Brivio (ITP Heidelberg)

SMEFT or HEFT?

a component of the d = 6 vs model discrepancy can be removed by reabsorbing higher powers of v within d = 6 coefficients instead of leaving them to $d \ge 8$

conceptually similar to using **HEFT** instead


Brehmer, Freitas, López-Val, Plehn 1510.03443

Cohen, Craig, Lu, Sutherland 2008.08597

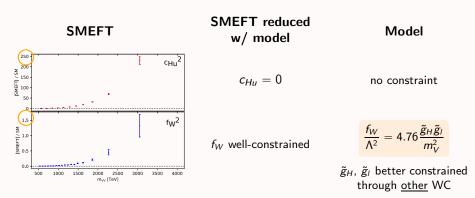
which EFT is most convenient? \rightarrow other theory issues, not covered today

Ilaria Brivio (ITP Heidelberg)

▶ RG running matters, even for low-ish cutoffs (~ 1 TeV) ^{Dawson,Homiller,Lane}

 \blacktriangleright RG running matters, even for low-ish cutoffs (\sim 1 TeV) $_{2007.01296}^{\text{Dawson,Homiller,Lane}}$

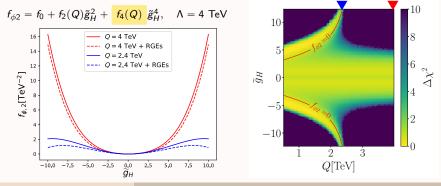
important also matching to WET/LEFT


 $\begin{array}{l} \text{impact of } \left(\bar{q}q\bar{q}q\right) \text{ operators} \\ \text{ on } (\bar{s}b)(\bar{\mu}\mu) \\ \text{amplified by mixing with } (\bar{q}q) \text{ op.} \end{array}$

Bruggisser, Schäfer, van Dyk, Westhoff 2101.07273

- ▶ RG running matters, even for low-ish cutoffs ($\sim 1 \text{ TeV}$) $\frac{\text{Dawson,Homiller,Lane}}{2007.01296}$
- **hierarchies** between coefficients easily induced, even 2-3 orders of mag. \rightarrow size at $C_i = 1$ is not fully representative of impact

e.g. $W^{\pm}W^{\mp}$ production high- m_{WW}


Brivio.Bruggisser.Geoffrav.Kilian.Krämer. Luchmann, Plehn, Summ 2108,01094

Ilaria Brivio (ITP Heidelberg)

- ▶ RG running matters, even for low-ish cutoffs (~ 1 TeV) ^{Dawson,Homiller,Lane}
- ▶ hierarchies between coefficients easily induced, even → size at $C_i = 1$ is not fully representative of impact
- ▶ matching scale can lead to large TH uncertainties.
 → understand origin + include in fits

Ilaria Brivio (ITP Heidelberg)

Other theory issues

- Inclusion of CP violating terms
- Unified flavor treatment \rightarrow combination with low-E
- Streamlining/automating NLO EW calculations in SMEFT
- 2-loop RGE running (consistency with 1-loop matching)
- Treatment of scale uncertainties in NLO SMEFT calculations
- Implementation of unitarity constraints & positivity bounds
- Handling fits with 50+ parameters \rightarrow bayesian?
- Interplay with direct searches
- SMEFT in non-perturbative effects? PDF, hadronization...

. . .