Inclusive & differential $tt\gamma$ measurement in the dilepton channel

Experimental joker talk

Gianny Mestdach for the CMS collaboration

14th International Workshop on Top Quark Physics

138 fb' (13 TeV

CMS

Standard mod 0.4

-0.4

-0.2 0 0.2 0.4 0.6 C_{IZ}^{'/A2}[TeV²]

Introduction

Goal and motivation:

- Inclusive & differential measurements using 138 fb⁻¹ of CMS data in 2 lepton channel
- Probe t- γ coupling \rightarrow constrain SMEFT operators that could modify it
- Combination of EFT result with l+jets measurement

Signal simulation:

- simulated as $p p \rightarrow 2l 2b 2v + \gamma$ at leading order
- photon can originate anywhere, no cuts targeting photons from top quarks
- overlap with ttbar removed using generator information

Photon categories:

- prompt γ : gen-match to photon from leptons / quarks / bosons
- nonprompt γ : all others / photons from mesons, faked by jets or from pileup

Background modeling & signal selection

Backgrounds:

- **Z***γ***:** predicted using simulation, mismodeling corrected using control region
- **Single-t+**γ & **Other+**γ: predicted using simulation
- **nonprompt** γ (any process) : **estimated from data,** closure test performed in simulation

Signal selection:

- two isolated, OS leptons $p_T > 25/15 \text{ GeV } |\eta| < 2.4$
 - one isolated photon
 - at least one b-tagged jet

 $p_{T} > 20 \text{ GeV}$ $|\eta| < 1.4442$ $p_{T} > 30 \text{ GeV}$ $|\eta| < 2.4$ m(ll) > 20 GeV ΔR(ℓ,γ)>0.4

 $\Delta R(j,\gamma) > 0.1, \Delta R(j,\ell) > 0.4$

```
|m(ll) - m<sub>z</sub>| > 15 GeV
|m(llγ) - m<sub>z</sub>| > 15 GeV
```


CMS

$Z\gamma$ correction

- Control region: invert signal region cut on $|m(ll\gamma) m_z|$
- Mismodeling of N_i, N_b distribution, other distributions OK
- Other distributions look reasonable
- Correction factors per N_i, N_b bin, for same flavour channels
- Consider uncertainties for
 - statistics of correction factors
 - presence of signal in the CR
 - $\circ \qquad \text{differences in production channel: ISR vs FSR photons}$

Nonprompt γ prediction

Relax cuts on σ_{nn} and Charged Isolation cuts in photon ID, then:

- measure # passing σ_{nn} / # falling into sideband in events failing Charged Isolation cut
- apply to events passing Charged Isolation cut \rightarrow estimate of nonprompt γ yield in signal region
- prompt γ contributions subtracted before measuring / applying the ratios
- Z_{\(\gamma\)} corrections applied in all regions
- Closure tests performed in simulation -> systematic uncertainties assigned based on level of closure

CMS

6

Systematic uncertainties

Main uncertainties:

- Luminosity: includes new & improved 2016 lumi measurement
- Photon selection: because of course
- Factorization & normalization scale:
 pre-fit envelope over 6 variations with
 μ_p & μ_p varied up/down separately & together
- Electron selection efficiency
 - \sim relatively small thanks to MVA-based lepton ID @ Very Loose WP
- Final state radiation

Fiducial region definition

Defined at the **particle level**

- stable particles "Status 1 particles"
- isolated = no stable particle (except neutrinos) with $p_T > 5$ GeV within $\Delta R = 0.1$
- leptons dressed using photons found within $\Delta R < 0.1$
- jets clustered using anti- k_{T} algorithm (R = 0.4)
- b-quark jets identified using ghost-matching procedure
- aligns with reco-level signal selection
- no Z-mass window requirements on m(ll) & m(ll γ) distributions

Leptons	Photons	Jets	b jets	Events
$p_T > 25(15) \text{ GeV}$	$p_T > 20 \text{ GeV}$	$p_T > 30 \text{ GeV}$	$p_T > 30 \text{ GeV}$	$N_l = 2$
$ \eta < 2.4$	$ \eta < 1.4442$	$ \eta < 2.4$	$ \eta < 2.4$	$N_{\gamma}=1$
	$\Delta R(\gamma, l) > 0.4$	$\Delta R(jet,l) > 0.4$	$\Delta R(jet,l) > 0.4$	$N_b \ge 1$
	isolated	$\Delta R(jet,\gamma) > 0.1$	$\Delta R(jet,\gamma) > 0.1$	$m(\ell\ell) > 20 { m ~GeV}$
		matched to b hadron		

-21-004 CMS

Inclusive cross section measurement

Events / bin

Data / pred.

Differential cross section measurement

- Particle level distributions obtained by unregularized unfolding using TUnfold
- Including photon, lepton, and jet kinematics & angles between objects, 12 distributions in total
- Compared to MadGraph5MC@NLO + Pythia8 / herwig7 predictions
- Provide both normalized & non-normalized results

CMS

SMEFT interpretation

- SMEFT operators introduce / modify couplings
- Measurements can constrain wilson coefficients
- Suppressed by Λ scale \rightarrow effect in high energy tails ~
- Operator effects modeled using gen-level reweighting
- Best fit within 1 of standard model prediction

t-γ

~

C₊₇ & C¹₊₇

high $pt(\gamma)$

ttγ in the l+jets channel (arxiv:2107.01508):

- 1 lepton, 1 photon, ≥3 jets, ≥1 b-tagged jet
- control regions for misidentified electrons and for $W_{\gamma} \& Z_{\gamma}$
- nonprompt γ , misidentified electrons, and multijet backgrounds from data
- binning per channel & jet multiplicity for final fit

 $\sigma_{fid (particle level)} = 800 \pm 7 (stat) \pm 46 (syst) fb$

SMEFT results

Wilson coefficient		son coefficient	$\frac{68\% \text{ CL interval}}{(\Lambda/\text{ TeV})^2}$	95% CL interval $(\Lambda / \text{TeV})^2$
Expected	C =	$c_{tZ}^{I} = 0$	[-0.19, 0.21]	[-0.29, 0.32]
	νtΖ	profiled	[-0.19, 0.21]	[-0.29, 0.32]
	cI	$c_{tZ} = 0$	[-0.20, 0.20]	[-0.30, 0.31]
	tZ	profiled	[-0.20, 0.20]	[-0.30, 0.31]
		d o	[0.25 0.16]	[0.42 0.28]
Observed	c_{tZ}	$c_{tZ} = 0$	[-0.35, -0.16]	[-0.42, 0.38]
		profiled	[-0.35, 0.07]	[-0.42, 0.39]
	$c_{\mathrm{tZ}}^{\mathrm{I}}$	$c_{tZ} = 0$	[-0.35, -0.16], [0.17, 0.35]	[-0.42, 0.42]
		profiled	[-0.32, 0.31]	[-0.41, 0.41]

SMEFT: combination with l+jets (TOP-18-010)

- Complimentary analysis:
 - larger branching ratio \rightarrow better statistics (most notably at high $p_{\tau}(\gamma)$) \rightarrow drives EFT sensitivity
 - \circ larger backgrounds \rightarrow larger systematic uncertainties \rightarrow better inclusive precision in 2l measurement
- Same basic framework \rightarrow straightforward combination
- Limited overlap:
 - l+jets in 2l selection negligible
 - 2l events in l+jets selection 5% at most
- Results:
 - ~25% improvement w.r.t. l+jets only
 - same minimum ~ same leading order signal samples

CMS

Summary

- Inclusive measurement of tty in the dilepton channel by CMS at 13 TeV • σ_{fid} = 174.4 ± 2.5 (stat) ± 6.1 (syst) fb = highest precision to date
- Particle-level differential results including photon, lepton, and jet kinematics
- EFT interpretation delivering **tight constraints on c**₁₇ & c₁₇₁ wilson coefficients \checkmark
- Combination of EFT results with l+jets measurement \searrow

2l result

	Wilson coefficient		68% CL interval	95% CL interval
			$(\Lambda/TeV)^2$	$(\Lambda/TeV)^2$
Expected	C	$c_{tZ}^{[I]} = 0$	[-0.28, 0.36]	[-0.42, 0.50]
	c_{tZ}	profiled	[-0.36, 0.44]	[-0.49, 0.56]
	$a^{[I]}$	$c_{tZ} = 0$	[-0.33, 0.31]	[-0.48, 0.46]
	c_{tZ}	profiled	[-0.42, 0.40]	[-0.54, 0.51]
Observed	C. 7	$c_{tZ}^{[I]} = 0$	[-0.41, 0.01]	[-0.51, 0.51]
	c_{tZ}	profiled	[-0.47, 0.42]	[-0.57, 0.58]
	$o^{[I]}$	$c_{tZ} = 0$	[-0.44,0.37]	[-0.55, 0.51]
	c_{tZ}	profiled	[-0.49, 0.43]	[-0.60, 0.55]

combination l+jets & 2l

	Wilson coefficient		68% CL interval	95% CL interval
			$(\Lambda/TeV)^2$	$(\Lambda/)^2$
Expected	c_{tZ}	$c_{tZ}^{[I]} = 0$	[-0.16, 0.19]	[-0.25, 0.29]
		profiled	[-0.22, 0.26]	[-0.29, 0.33]
	$c_{tZ}^{[I]}$	$c_{tZ} = 0$	[-0.18, 0.18]	[-0.27, 0.27]
		profiled	[-0.24, 0.24]	[-0.32, 0.32]
Observed	c_{tZ}	$c_{tZ}^{[I]} = 0$	[-0.30, -0.12]	[-0.37, 0.33]
		profiled	[-0.34,0.23]	[-0.40, 0.38]
	$c_{tZ}^{[I]}$	$c_{tZ} = 0$	[-0.32, -0.11], [0.15, 0.29]	[-0.38, 0.37]
		profiled	[-0.33,0.31]	[-0.40, 0.39]

