

The impact of top-quark modelling in tt+DM searches at the LHC arXiv:2108.01089

Jonathan Hermann • 15.09.2021 In collaboration with: Małgorzata Worek

Introduction

- Ongoing search for DM includes CMS & ATLAS
- Need precise predictions (NLO, off-shell) for a plethora of background processes
- DM signals most prominent in distribution tails
 - -> This is the region where NLO and off-shell corrections are generally large
- Problem: calculations very involved
- -> Are these corrections actually necessary for DM searches at the LHC?

Particle Physic

Setup

Calculate signal strength exclusion limits to quantify the relevance of these effects

Signal: $pp \rightarrow b\bar{b}e^+\mu^-\nu_e\bar{\nu}_\mu\chi\bar{\chi}$ (tt+DM)

-> Spin-O s-channel mediator model, DMsimp implementation Backović. Krämer. Maltoni. Martini. Mawatari. Pellen '15

-> generated with MadGraph Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro '14

-> always kept at NLO with LO decays

Background: $pp \rightarrow b\bar{b}e^+\mu^-\nu_e\bar{\nu}_\mu$ (tt) <u>Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek '11</u> $pp \rightarrow b\bar{b}e^+\mu^-\nu_e\bar{\nu}_\mu\nu_\tau\bar{\nu}_\tau$ (ttZ) <u>Bevilacqua, Hartanto, Kraus, Weber, Worek '19</u>

-> generated with HELAC-NLO Bevilacqua, Czakon, Garzelli, van Hameren, Kardos, Papadopoulos, Pittau, Worek '11

-> Compare LO & NLO as well as NWA & full off-shell

Modelling of unstable particles

Full off-shell treatment:

- All diagrams & interferences included
- Breit-Wigner distribution for unstable particles

$$\frac{d\sigma}{dp^2} \sim \frac{1}{(p^2-m^2)^2+m^2\Gamma^2}$$

Narrow-width approximation (NWA):

- Only double-resonant diagrams included
- Delta distribution for unstable particles

$$\frac{d\sigma}{dp^2} \sim \frac{\pi}{m\Gamma} \delta \left(p^2 - m^2 \right)$$

Subprocess	Total number of diagrams	Number of diagrams in NWA
$gg \to b\bar{b}\mu^-\bar{\nu}_\mu e^+\nu_e\bar{\nu}_\tau\nu_\tau$	1174	8
$qq \to bb\mu \nu_{\mu}e^{+}\nu_{e}\nu_{\tau}\nu_{\tau}$	082	4
$gg \rightarrow bb\mu \ \nu_{\mu}e^{+}\nu_{e}$	47	3
$q\bar{q} \to bb\mu^-\bar{\nu}_\mu e^+\nu_e$	40	1

Exclusion limits - Effects of selection cuts

Process	Order	Scale	$\sigma_{\rm uncut}$ [fb]	$\sigma_{\rm cut}$ [fb]	$\sigma_{ m cut}/\sigma_{ m uncut}$	Events f	for $L = 300 \text{ fb}^{-1}$
$t\bar{t}$ NWA	LO LO LO NLO NLO, LO dec	$H_T/4$ $E_T/4$ m_t $H_T/4$ $H_T/4$	1061 984 854 1097 1271	0 0 0 0 0	0.0% 0.0% 0.0% 0.0% 0.0%		-> About ¼ of events missing in NWA
$t\bar{t}Z$ NWA	LO LO LO NLO NLO, LO dec	$H_T/3 \\ E_T/3 \\ m_t + m_Z/2 \\ H_T/3 \\ H_T/3 \end{pmatrix}$	$\begin{array}{c} 0.1223 \\ 0.1052 \\ 0.1094 \\ 0.1226 \\ 0.1364 \end{array}$	$\begin{array}{c} 0.0130 \\ 0.0116 \\ 0.0134 \\ 0.0130 \\ 0.0140 \end{array}$	11% 11% 12% 11% 10%	47 42 48 47 50	Cuts: $M_{T2,W} > 90 \text{GeV}$ $p_{T \text{ miss}} > 150 \text{GeV}$
$t\bar{t}$ Off-shell	LO LO LO NLO	$ H_T/4 E_T/4 m_t H_T/4 $	$ 1067 \\ 989 \\ 861 \\ 1101 $	$\begin{array}{c} 0.0144 \\ 0.0131 \\ 0.0150 \\ 0.0156 \end{array}$	$\begin{array}{c} 0.0013\%\\ 0.0013\%\\ 0.0017\%\\ 0.0017\%\\ 0.0014\%\end{array}$		$C_{em} > 130 \text{GeV}$ $C_{em} = M_{T2 W} + 0.2 \cdot (p_{T \text{ miss}} - 200 \text{GeV})$
$t\bar{t}Z$ Off-shell	LO LO LO NLO	$H_T/3 \\ E_T/3 \\ m_t + m_Z/2 \\ H_T/3$	$\begin{array}{c} 0.1262 \\ 0.1042 \\ 0.1135 \\ 0.1269 \end{array}$	$\begin{array}{c} 0.0135 \\ 0.0115 \\ 0.0140 \\ 0.0134 \end{array}$	11% 11% 12% 11%	49 41 50 48	Haisch, Pani, Polesello '17

Exclusion limits - Modelling

- LO inadequate due to large uncertainties, even if only using it for ttZ
- NLO with LO decays still too large due to large uncertainties and overestimated normalization
- In NWA, tt contribution is zero
- Full NWA results are too good due to missing off-shell tt contribution

Exclusion limits - Modelling (2)

Exclusion limits - Additional analyses

- Choice of observable:
 - Compared five different observables
 - Pseudoscalar mediator: $\cos(\theta_{ll}^*) = \tanh(|\eta_{l_1} \eta_{l_2}|/2)$ provides most stringent limits
 - Scalar mediator: $M_{T2,t}$ for light mediators, $\cos(\theta_{ll}^*)$ for heavier ones
- Scale choice:
 - Important, even at NLO
 - Fixed scale leads to less stringent limits -> use dynamical scale
- Luminosity:
 - Increasing the luminosity improves the limits
 - Modelling effects larger for large luminosity but general behavior is the same

Conclusions

- Use full(!) NLO for tt and ttZ (NLO for production and decays)
- Include off-shell effects for tt, otherwise the contribution vanishes
- For ttZ using the NWA is enough in most cases
- $\cos(\theta_{ll}^*)$ provides the most stringent limits for most considered model configurations
- Choose a dynamical scale
- Larger Luminosity always helps

Thank you for your attention!

Backup

- Two new particles:
 - Fermionic DM particle
 - Scalar or Pseudoscalar mediator

 \rightarrow couples SM to dark sector

- Minimal flavor violation:
 - Flavor symmetry only broken by masses
 - \rightarrow mediator-quark couplings proportional to Yukawa coupling
- No mixing between SM Higgs and scalar mediator

- Four new parameters: $\{g_q, g_\chi, m_\chi, m_Y\}$ \rightarrow use $m_\chi = 1 \text{ GeV}$
- Implementation:
 - DMsimp [Backović et al., 2015]

DM distributions

DM distributions

Signal strength exclusion limits - Likelihood

$$\begin{array}{c|c} \hline \mathbf{Poisson \ distributions} \\ \rightarrow \ relative \ statistical \ uncertainty \sim 1/\sqrt{\lambda_i} \\ \hline \mathbf{Likelihood:} \\ L(X|\lambda(\mu,\nu)) = \prod_i P_i(X_i|\lambda_i) \cdot \pi_i^{\mathrm{PDF}}(\tilde{\nu}_i^{\mathrm{PDF}},\nu_i^{\mathrm{PDF}}) \cdot \pi_i^{\mathrm{scale}}(\tilde{\nu}_i^{\mathrm{scale}},\nu_i^{\mathrm{scale}}) \\ \hline \mathbf{Prediction:} \ \lambda = \{\lambda_i\} \\ \hline \mathbf{Data:} \ X = \{X_i\} \end{array}$$

Signal strength exclusion limits - PDF

Setup - Input

Parameters:
$$\Gamma_W = 2.0988 \,\text{GeV}, \quad \Gamma_Z = 2.50782 \,\text{GeV}$$

 $G_\mu = 1.166378 \times 10^{-5} \,\text{GeV}^{-2}, \quad m_W = 80.385 \,\text{GeV}, \quad m_Z = 91.1876 \,\text{GeV}$
 $\Gamma_t^{\text{LO,NWA}} = 1.50174 \,\text{GeV}, \quad \Gamma_t^{\text{LO,FW}} = 1.47848 \,\text{GeV}, \quad m_t = 173.2 \,\text{GeV}$

Scales:

PDFs:

$$H_T = p_{T,b} + p_{T,\bar{b}} + p_{T,e^+} + p_{T,\mu^-} + p_{T,\text{miss}}$$

$$\mu_0^{t\bar{t}} = H_T/4, \quad \mu_0^{t\bar{t}Z} = H_T/3, \quad \mu_0^{\rm DM} = H_T/3$$

CT14, MMHT14, NNPDF3.0

Setup - Inclusive cuts

 $p_{T,b} > 40 \,\text{GeV}, \quad |\eta_b| < 2.5, \quad \Delta R_{b\bar{b}} > 0.4$ $p_{T,l} > 30 \,\text{GeV}, \quad |\eta_l| < 2.5, \quad \Delta R_{lb} > 0.4, \quad \Delta R_{ll} > 0.4$ $p_{T,\text{miss}} > 50 \,\text{GeV}$

Importance of correct modelling - NLO corrections

p_{T, miss} [GeV]

Importance of correct modelling - Off-shell effects

Off-shell effects:

- Only small effects on normalization and angular distributions
- Modified distribution shapes for some dimensionful observables
- Largest effects in distribution tails and around kinematic edges

with $M_{T,W} \leq m_W$ in the NWA

The SM background - unstable particles

Used programs: HELAC-Phegas [Cafarella et al., 2009] / HELAC-NLO [Bevilacqua et al., 2013] MCFM [Campbell and Neumann, 2019] MadGraph aMC@NLO [Alwall et al., 2014]

Event selection

25

Event selection

Problem: $t\bar{t}Z$ looks very similar to DM signal

Effects of cut selection

Exclusion limits - Choice of observable

- Five bins for all observables (except integrated fiducial cross section)
- $\cos(\theta_{ll}^*) = \tanh(|\eta_{l_1} \eta_{l_2}|/2)$ generally best observable, i.e. provides most stringent limits
- For light scalar mediators one should use $M_{T2,t}$ instead
- $\Delta \phi_{l,{
 m miss}}$ even worse than the normalization in most cases

Exclusion limits - Scale choice

- Scale choice even important at NLO for some observables
- One should use a dynamical scale
- Reason: large scale uncertainties for the fixed scale

Scale Setting	μ_0^{DM}	$\mu_0^{t\bar{t}}$	$\mu_0^{t\bar{t}Z}$	
fixed	$m_t + m_Y/2$	m_t	$m_t + m_Z/2$	
E_T	$E_T/3$	$E_T/4$	$E_T/3$	
H_T	-	$H_T/4$	$H_T/3$	
Default	$E_T/3$	$H_T/4$	$H_T/3$	
$E_T =$	$\sum \sqrt{M_i}$	$p_{T_{i}}^{2} + p_{T_{i}}^{2}$	and	
<u>тек.</u> 2108.01089 і	$=t,\overline{t}(,Z,Y)$ V	- 1,6		
77	10 20		28	

Exclusion limits - Luminosity

- Larger Luminosity means smaller statistical uncertainties

 > more stringent limits
- More significant impact for differential distributions
- Previous comparisons with smaller Luminosity: same structure but smaller differences

The 'stransverse' mass - idea

The 'stransverse' mass - idea & definition

The 'stransverse' mass - distribution

Not a 'hard' cut-off but drop-off is clearly visible

The 'stransverse' mass - distribution

- Use b-jet + lepton instead of lepton as visible, massive 'particle'
- Problem: which jet is associated with which lepton?
 - take minimum of invariant
 b-jet + lepton mass
 combinations
 - minimize the sum of the two invariant masses to avoid combining one lepton with both b-jets

The 'stransverse' mass - definition

$$\begin{split} M_{T2}^{2} &= \min_{\substack{\nu_{1} \\ p_{T}^{\nu_{1}} + \mathbf{p}_{T}^{\nu_{2}} = \mathbf{p}_{T,\text{miss}}} \left[\max\{M_{T}^{2}\left(\mathbf{p}_{T}^{(lb)_{1}}, \mathbf{p}_{T}^{\nu_{1}}\right), M_{T}^{2}\left(\mathbf{p}_{T}^{(lb)_{2}}, \mathbf{p}_{T}^{\nu_{2}}\right)\} \right] \\ \text{where} \quad M_{T}^{2}\left(\mathbf{p}_{T}^{(lb)_{i}}, \mathbf{p}_{T}^{\nu_{i}}\right) = M_{(lb)_{i}}^{2} + 2\left(E_{T}^{(lb)_{i}}E_{T}^{\nu_{i}} - \mathbf{p}_{T}^{(lb)_{i}}\mathbf{p}_{T}^{\nu_{i}}\right) \end{split}$$

Lepton + b-jet combinations chosen such that $\ M_{(lb)_1} + M_{(lb)_2}$ is minimal