TOP2021－Young Scientist Forum

Observation of tW in the lepton＋jets channel

Duncan Leggat
IHEP，Beijing
On behalf of the CMS Collaboration
$15^{\text {th }}$ September 2021

What is tW production?

What is tW production?

- The associated production of a single top quark with a W boson

Why do we study it?

- Direct probe of $V_{t b}$,
- Sensitive to new physics,
- Background to many searches,
- Interference with ttbar at NLO,
- Additional measurements of top properties.

tW in the dilepton vs lepton+jet final states

Dilepton

- Clean process with few backgrounds,
- Well studied and understood by CMS and ATLAS.

Lepton+jets

- Much larger statistics ($B R(t W \rightarrow l+j) \sim 40 \%)$,
- Possibility of full reconstruction of the top quark,
- Larger number and more difficult backgrounds.

Signature and backgrounds

Signal definition

- One lepton (muon or electron),
- Missing energy from associated neutrino,
- Three jets, one originating from ab quark.

Major backgrounds

- tt - indistinguishable from tW at NLO,
- W+jets and QCD with fake or missing leptons/b-jets,
- Small contributions from VV, DY and other single top processes.

Event selections

All events require exactly 1 well isolated lepton (muon/electron)
Analysis regions based on jet topology:

- 3 j - Signal region
- $2 \mathrm{j}-\mathrm{W}+\mathrm{jets}$ and QCD enriched region
- 4 j - \bar{t} enriched region

One jet must pass b tagging
No requirements are made on p_{T} miss or $m_{\mathrm{T}} \mathrm{W}$

Data-driven methods used for QCD and W+jet backgrounds

- QCD templates taken from an inverted isolation requirement on lepton,
- Corrections to W+jets and QCD normalisations are estimated from a fit on $m_{\mathrm{T}}{ }^{\mathrm{W}}$ in a 0 t control region.

$$
m_{\mathrm{T}}^{\mathrm{W}}=\sqrt{2 p_{\mathrm{T}}^{\text {miss }} p_{\mathrm{T}}^{\ell}\left(1-\cos \left[\phi^{\vec{p}_{\mathrm{T}}^{\text {miss }}}-\phi^{\ell}\right]\right)}
$$

Discriminating between tW and tt

In order to discriminate tW from leading ttbar background, a BDT is used.

- One BDT is trained in the signal region (3j) per channel,
- Weights applied to all three analysis regions,
- A subset of the signal and $t \mathrm{t}$ events are used for the training.

Table 2: Descriptions of the variables used to train and evaluate the BDT, ranked in order of importance in the final result. The same variables are used in both muon and electron channels.

Difference between $t W$ and $t \bar{t}$ final states at LO is one b quark

BDT discriminant in each region

BDT discriminants from all regions are fit simultaneously to extract the signal cross section

BDT discriminants for all regions scaled to the result of the likelihood fit.

Likelihood fit and results

Binned likelihood fit of BDT discriminant;

- Assuming Poisson distributions in each bin,
- Systematic uncertainties included as nuisance parameters affecting rate and/or shapes of input templates.

Combination of all regions gives measured cross section:

$$
89 \pm 4 \text { (stat) } \pm 12 \text { (syst) pb }
$$

Jet energy scale 6
b tagging efficiency 4
Luminosity 3
Lepton energy scale 2
Trigger efficiency 1
Jet energy resolution 1
b tagging misidentification rate <1
Unclustered energy <1
Pileup <1
Normalization
Data-driven background uncertainties
QCD multijet normalization 7
W+jets normalization 6
Z+jets normalization 3
Single t normalization 1
$t \bar{t}$ normalization 1
VV normalization <1
Theoretical
$h_{\text {damp }}$ 4
Diagram removal/diagram subtraction 3
Underlying event tune 3
Colour reconnection model 1
Parton distribution function 1
Matrix element/parton shower matching 1
Final-state radiation <1
Initial-state radiation <1
Total systematic uncertainty 14
Statistical uncertainty 5
Total uncertainty 15
15\% uncertainty, compared to an expected uncertainty of 17% based on the Asimov dataset.

Summary

First observation of tW production in the lepton+jets final state is presented,

- QCD background templates assembled using data-driven control region,
- BDT used to separate tW signal from leading ttbar background,
- Systematics and major backgrounds are controlled via two control regions,
- Likelihood fit used to extract signal strength of signal tW.

Measured cross section: 89 ± 4 (stat) ± 12 (syst) pb

SM prediction: 71.7 ± 1.8 (scale) ± 3.4 (PDF) pb at NNLO [Kidonakis, arXiv:1506.04072]
$79.5^{+1.9}{ }_{-1.8}$ (scale) ${ }^{+2.0}$-1.4 $(\mathrm{PDF}) \mathrm{pb}$ at aN3LO [Kidonakis, Yamanaka, arXiv:2102.11300]
Result available on arXiv (arXiv:2109.01706) and submitted to JHEP

