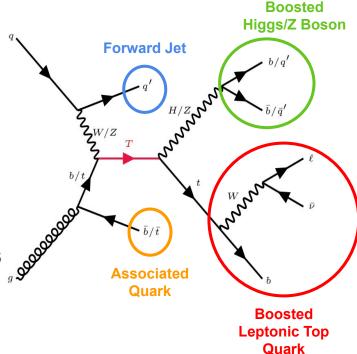

Search for the Single Production of Vector-Like Top Quarks in the Decay T→Ht or T→Zt with the ATLAS Detector

Carlos Josué Buxó Vázquez (Michigan State University) On behalf of the ATLAS collaboration 14th International Workshop on Top Quark Physics (TOP 2021)

Vector-Like Quarks Overview


- Hierarchy problem: Fine tuning required to explain observable Higgs boson mass from quantum loop corrections from the top quark
- Vector-Like Quarks (VLQs) predicted by some beyond the Standard Model (BSM) theories aiming to solve the hierarchy problem
 - Composite Higgs, RS extra dimension models: cancel quadratic divergences from top quark
 - Spin 1/2 color triplets (quarks) whose left and right chiral components transform equally under the weak-isospin SU(2) group (vector-like)
- Single production expected to be the dominant production mechanism at higher masses with the cross section being proportional to κ²
- κ is the common coupling strength between VLQs and SM bosons

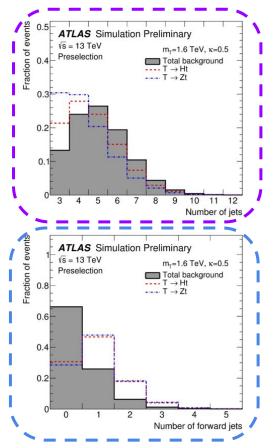
T→Ht/Zt+X Search

- First result in singly produced T→Ht/Zt searches using the ATLAS full Run-2 dataset [ATLAS-CONF-2021-040]
- SU(2) T singlet configuration in 1-lepton final states used as a benchmark
 - **SU(2)** T singlet: BR(T→Ht)=BR(T→Zt)=0.25, BR(T→Wb)=0.5
- Initial quark recoiling off the vector boson often results in a high pseudorapidity jet
- Optimized for T decaying into boosted leptonically decaying top quark and hadronically decaying Higgs/Z boson

Analysis Search Regions

• Four base regions defined to individually target the Ht and Zt decay topologies

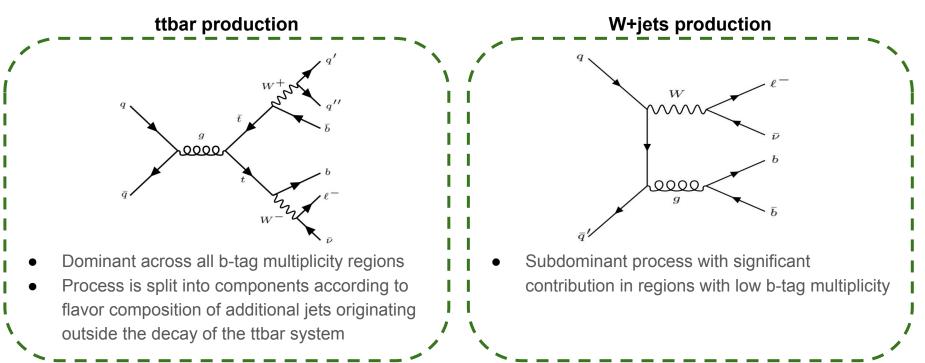
Baseline selections on jet and <i>b</i> -tag multiplicity					
Jet multiplicity	<i>b</i> -tag multiplicity	Channel name	Targeted signal		
3–5	1–2	LJ, 1-2b	$T \rightarrow Zt$		
3–5	≥3	LJ, ≥3b	$T \rightarrow Ht$		
≥6	1–2	HJ, 1-2b	$T \rightarrow Zt$		
≥6	≥3	HJ, ≥3b	$T \to Ht$		


 Additional requirements on number of boosted objects tailored to targeted signal results in 24 search regions (SRs)

Targeted signal

Example search region

T→Ht


[ATLAS-CONF-2021-040]

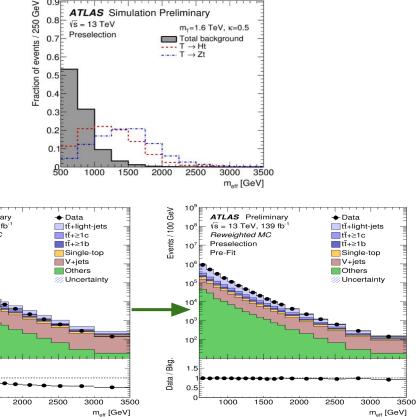
Main Background Processes

[ATLAS-CONF-2021-040]

MICHIGAN STATE UNIVERSITY

Signal Discriminant

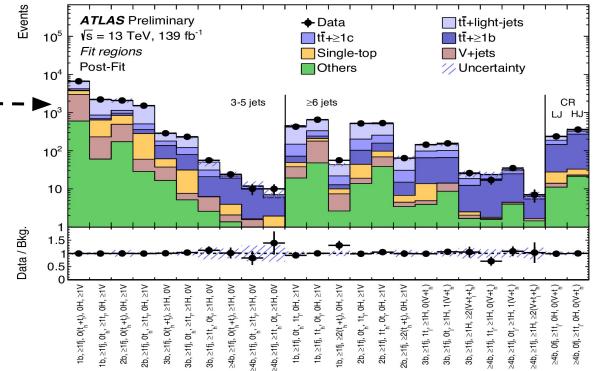
The effective mass (m_{eff}) has good separation power between signal and background due to the large T mass resulting in high p_{τ} decay products


$$m_{\rm eff} = \sum_{\rm central \ jets} p_{\rm T}^j + \sum_{\rm leptons} p_{\rm T}^\ell + E_{\rm T}^{\rm mis}$$

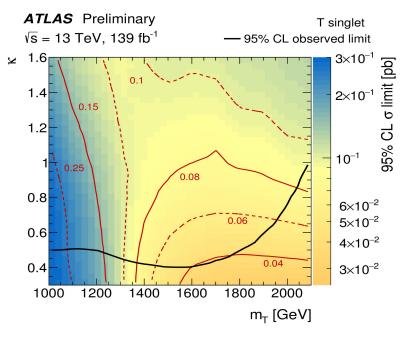
- MC generators for ttbar[1,2] and W/Z+jets[3] processes mismodel the high p_{τ} and high-jet multiplicity spectra
- Data-driven correction factors are derived in signal depleted regions to correct the mismodeling

GeV Events / 100 GeV ATLAS Preliminary 🔶 Data 9 √s = 13 TeV, 139 fb tt+light-jets 10^{8} Unreweighted MC tī+≥1c Events / 1 Preselection Itī+≥1b Preselection 10^{7} 10 Sinale-top Pre-Fit Pre-Fi V+iets Others Uncertainty 10^{3} 10 10² 102 Data / Bkg. Data / Bkg. 05 0.5 1000 1000 1500 2000 2500 3000 3500 m_{eff} [GeV] [1] EPJC 79 (2019) 1028, [2] EPJC 80 (2020) 528, [3] ATL-PHYS PUB-2017-006

[ATLAS-CONF-2021-040]


6

T→Ht/Zt+X Results


- Binned likelihood fit to data on m_{eff} across all SRs
- No significant deviation from _ the SM is observed

T→Ht/Zt+X Results

- Upper limits on the single production of the SU(2) singlet T are derived and interpreted in the search parameter space
 - coupling strength T mass plane
 - T decay width BR(T→Wb) plane
- Coupling strength values (κ) above black line are excluded
- Red contour lines indicate points on the parameter space of equal cross section that are excluded

Summary

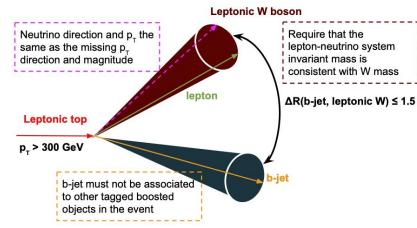
- First set of results for the search of singly produced T decaying to Ht or Zt in the 1-lepton channel using the ATLAS full Run-2 dataset is presented
 - Most recent public CMS result with the same final state set production cross section exclusion limits up to a T mass of 1.8 TeV but only considered the T→Ht decay channel [PLB 771 (2017) 80]
- Search is sensitive across a large range of T masses and coupling strength values
- Upper limits on the production cross section of T in the SU(2) singlet scenario exclude coupling strength values of $\kappa \ge 0.5$ for T masses below 1.8 TeV

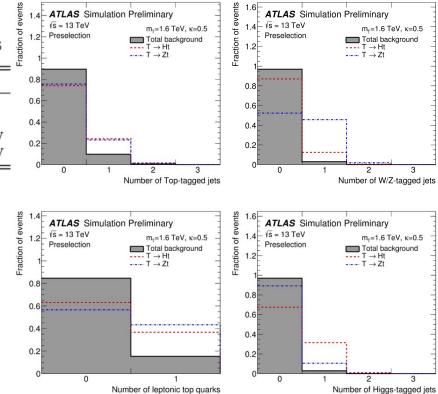
Backup

Vector-Like Quarks SU(2) Multiplets

- There are 7 possible SU(2) multiplets
- VLQs couple preferentially to the third generation SM quarks

Electric charge	Singlets	I	Double	$^{\mathrm{ts}}$	Trip	olets	Allowed decays
5/3		X			X		$X \rightarrow Wt$
2/3	Т	Т	Т		Т	Т	$T \rightarrow Ht, Zt, Wb$
-1/3	В		в	в	В	В	$B \rightarrow Hb, Zb, Wt$
-4/3				Y		Y	$Y \rightarrow Wb$




Boosted Objects

 Simple boosted object tagger designed to identify hadronically decaying objects using variable-radius jets

Observable	t-tag	H-tag	V-tag
$p_{\rm T}~({\rm GeV})$	>400	>350	>350
Mass (GeV)	>140	[105, 140]	[70, 105]
$N_{\rm const}$	$ \begin{array}{l} \geq 2 \mbox{ if } p_{\rm T} < 700 \mbox{ GeV} \\ \geq 1 \mbox{ if } p_{\rm T} > 700 \mbox{ GeV} \end{array} \end{array} $	$\begin{array}{l} = 2 \mbox{ if } p_{\rm T} < 600 \mbox{ GeV} \\ \leq 2 \mbox{ if } p_{\rm T} > 600 \mbox{ GeV} \end{array}$	$\begin{array}{l} = 2 \mbox{ if } p_{\rm T} < 450 \mbox{ GeV} \\ \leq 2 \mbox{ if } p_{\rm T} > 450 \mbox{ GeV} \end{array}$

• Leptonic top reconstruction

Kinematic Reweighting of Background

[ATLAS-CONF-2021-040]

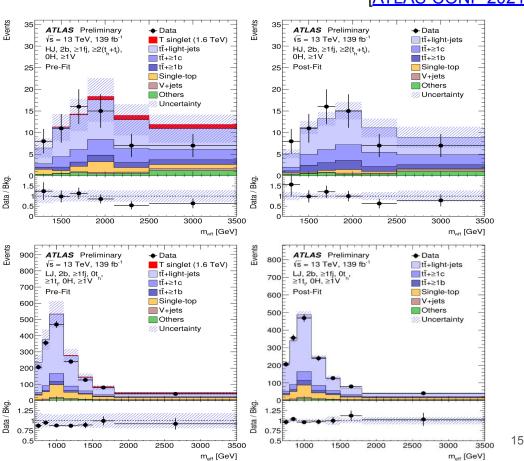
- Multistep procedure that fixes the mismodeling on the number of jets (N_{jets}) and m_{eff} that are introduced by the ttbar and W/Z+jets MC generators
- Correction factors for *N*_{jets} and *m*_{eff} are derived in reweighting source regions that are designed to be enriched in the background to be reweighted and that are signal depleted

Correction factor for process 'a'		Reweighting source regions				
$Data(x) - MC^{non-a}(x)$	Lepton multiplicity	Jet multiplicity	<i>b</i> -tag multiplicity	Additional cuts	Targeted background	
$R_a(x) = \frac{Data(x) - MC}{MC^a(x)}$	1	≥3	2	_	$t\bar{t} + tW$	
$MC^{\alpha}(x)$	2	≥3	1	$ m_{\ell\ell} - M_Z \le 10 \text{ GeV},$	Z+jets	
				$E_{\rm T}^{\rm miss} < 100 {\rm GeV}$		

- For each background process an initial $R(N_{jets})$ is derived and applied to the simulation. Subsequently $R(m_{eff})$ is derived, smoothed to reduce statistical fluctuations and then applied to the simulation
- The procedure is first applied to the W/Z+jets background with the correction factors derived for Z+jets
- The procedure is then applied to the ttbar and single top tW channel jointly using the corrected W/Z+jets background
 - Due to interferences arising from the same final state of the ttbar and tW processes, these are reweighted jointly

T→Ht/Zt+X Search Regions

Fit regions with 3–5 jets					
b-tag mult.	Boosted-object mult.	Region name	Targeted signal / bkg		
1	$0(t_h+t_l), 0H, \ge 1V$	LJ, 1b, ≥ 1 fj, 0(t _h +t _l), 0H, ≥ 1 V	$T \rightarrow Zt$		
1	$Ot_h, \geq 1t_l, OH, \geq 1V$	LJ, 1b, ≥ 1 fj, 0t _h , ≥ 1 t _l , 0H, ≥ 1 V	$T \rightarrow Zt$		
2	$O(t_h + t_l), OH, \ge 1V$	LJ, 2b, ≥ 1 fj, 0(t _h +t _l), 0H, ≥ 1 V	$T \rightarrow Zt$		
2	$Ot_h, \geq 1t_l, OH, \geq 1V$	LJ, 2b, ≥ 1 fj, 0t _h , ≥ 1 t _l , 0H, ≥ 1 V	$T \rightarrow Zt$		
	$O(t_h + t_l), \ge 1H, 0V$	LJ, 3b, ≥ 1 fj, 0(t _h +t _l), ≥ 1 H, 0V	$\bar{T} \rightarrow \bar{H}t$		
3	$Ot_h, \geq 1t_l, \geq 1H, OV$	LJ, 3b, ≥ 1 fj, 0t _h , ≥ 1 t _l , ≥ 1 H, 0V	$T \rightarrow Ht$		
3	$\geq 1 t_h, 0 t_l, \geq 1 H, 0 V$	LJ, 3b, ≥ 1 fj, ≥ 1 t _h , 0t _l , ≥ 1 H, 0V	$T \rightarrow Ht$		
≥ 4	$O(t_h+t_l), \ge 1H, 0V$	$LJ, \geq 4b, \geq 1fj, 0(t_h+t_l), \geq 1H, 0V$	$T \rightarrow Ht$		
≥ 4	$0t_h, \geq 1t_l, \geq 1H, 0V$	$LJ, \geq 4b, \geq 1fj, 0t_h, \geq 1t_l, \geq 1H, 0V$	$T \rightarrow Ht$		
≥ 4	$\geq 1 t_h, 0 t_l, \geq 1 H, 0 V$	$LJ, \geq 4b, \geq 1fj, \geq 1t_h, Ot_l, \geq 1H, OV$	$T \rightarrow Ht$		
≥4	$\geq 1\overline{t}_l, \overline{0H}, \overline{0(V+t_h)}$	$\overline{LJ}, \ge 4\overline{b}, \overline{0fj}, \ge 1\overline{t_l}, \overline{0H}, \overline{0}(\overline{V}+\overline{t_h})$	$t\bar{t}+\geq 1b$		
		Fit regions with ≥6 jets			
<i>b</i> -tag mult.	Boosted-object mult.	Region name	Targeted signal / bkg		
1	$Ot_h, 1t_l, OH, \geq 1V$	HJ, 1b, ≥ 1 fj, 0t _h , 1t _l , 0H, ≥ 1 V	$T \rightarrow Zt$		
1	$1t_h, 0t_l, 0H, \geq 1V$	HJ, 1b, ≥ 1 fj, 1t _h , 0t _l , 0H, ≥ 1 V	$T \rightarrow Zt$		
1	$\geq 2(t_h+t_l), 0H, \geq 1V$	HJ, 1b, ≥ 1 fj, $\geq 2(t_h+t_l)$, 0H, ≥ 1 V	$T \rightarrow Zt$		
2	$Ot_h, 1t_l, OH, \geq 1V$	HJ, 2b, ≥ 1 fj, 0t _h , 1t _l , 0H, ≥ 1 V	$T \rightarrow Zt$		
2	$1t_h, 0t_l, 0H, \geq 1V$	HJ, 2b, ≥ 1 fj, 1t _h , 0t _l , 0H, ≥ 1 V	$T \rightarrow Zt$		
2	$\geq 2(t_h+t_l), 0H, \geq 1V$	HJ, 2b, ≥ 1 fj, $\geq 2(t_h+t_l)$, 0H, ≥ 1 V	$T \rightarrow Zt$		
3	$1t_l, \ge 1H, \overline{O(V+t_h)}$	HJ, 3b, ≥ 1 fj, 1t _l , ≥ 1 H, 0(V+t _h)	$T \rightarrow Ht$		
3	Ot_l , $\geq 1H$, $1(V+t_h)$	HJ, 3b, ≥1fj, 0t _{<i>l</i>} , ≥1H, 1(V+t _{<i>h</i>})	$T \rightarrow Ht$		
3	≥ 1 H, $\geq 2(V+t_l+t_h)$	HJ, 3b, ≥ 1 fj, ≥ 1 H, $\geq 2(V+t_l+t_h)$	$T \rightarrow Ht$		
≥ 4	$1t_l, \geq 1H, O(V+t_h)$	HJ, ≥4b, ≥1fj, 1t _l , ≥1H, 0(V+t _h)	$T \rightarrow Ht$		
≥ 4	$0t_l, \ge 1H, 1(V+t_h)$	HJ, ≥4b, ≥1fj, 0t _l , ≥1H, 1(V+t _h)	$T \rightarrow Ht$		
≥ 4	≥ 1 H, $\geq 2(V+t_l+t_h)$	$HJ, \geq 4b, \geq 1fj, \geq 1H, \geq 2(V+t_l+t_h)$	$T \rightarrow Ht$		
≥4	$\geq 1t_l, 0H, 0(V+t_h)$	HJ , $\geq 4b$, Ofj , $\geq 1t_l$, OH , $O(V+t_h)$	$t\bar{t} \rightarrow 1b$		

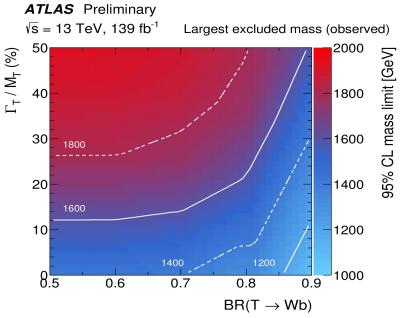

Validation regions with 3–5 jets				
<i>b</i> -tag mult.	Fwd-jet mult.	Boosted-object mult.	Region name	
1	0	$0t_h, 0t_l, 0H, \ge 1V$	LJ, 1b, 0fj, 0t _h , 0t _l , 0H, \geq 1V	
1	0	$0t_h, \geq 1t_l, 0H, \geq 1V$	LJ, 1b, 0fj, 0t _h , \geq 1t _l , 0H, \geq 1V	
1	≥ 1	$\geq 1(t_h+t_l), 0H, 0V$	LJ, 1b, $\geq 1 fj$, $\geq 1(t_h + t_l)$, 0H, 0V	
1	≥ 1	$\geq 1 t_h, 0 t_l, 0 H, \geq 1 V$	LJ, 1b, ≥ 1 fj, ≥ 1 t _h , 0t _l , 0H, ≥ 1 V	
2	0	$0t_h, 0t_l, 0H, \ge 1V$	$\overline{\text{LJ}}, \overline{2b}, \overline{0fj}, \overline{0t_h}, \overline{0t_l}, \overline{0H}, \ge 1\overline{V}$	
2	0	$0t_h, \geq 1t_l, 0H, \geq 1V$	LJ, 2b, 0fj, $0t_h$, $\geq 1t_l$, 0H, $\geq 1V$	
2	≥ 1	$\geq 1(t_h+t_l), 0H, 0V$	LJ, 2b, ≥ 1 fj, ≥ 1 (t _h +t _l), 0H, 0V	
2	≥ 1	$\geq 1 t_h, 0 t_l, 0 H, \geq 1 V$	LJ, 2b, ≥ 1 fj, ≥ 1 t _h , 0t _l , 0H, ≥ 1 V	
≥3	0	$0(t_h+t_l), \geq 1H, 0V$	$LJ, \geq 3b, 0fj, 0(t_h+t_l), \geq 1H, 0V$	
≥3	≥ 1	0 H, $\geq 1(V+t_l+t_h)$	$LJ, \geq 3b, \geq 1fj, 0H, \geq 1(V+t_l+t_h)$	
	Y	alidation regions with	≥6 jets	
<i>b</i> -tag mult.	Fwd-jet mult.	Boosted-object mult.	Region name	
1	0	$1(t_h+t_l), 0H, \ge 1V$	HJ, 1b, 0fj, $1(t_h+t_l)$, 0H, $\ge 1V$	
1	0	$\geq 2(t_h+t_l), 0H, \geq 1V$	HJ, 1b, 0fj, ≥2(t_h + t_l), 0H, ≥1V	
1	≥ 1	$Ot_h, Ot_l, \geq 1H, \geq 1V$	HJ, 1b, ≥ 1 fj, 0t _h , 0t _l , ≥ 1 H, ≥ 1 V	
1	≥ 1	$\geq 2(t_h+t_l), \geq 1H, 0V$	HJ, 1b, ≥ 1 fj, $\geq 2(t_h+t_l)$, ≥ 1 H, 0V	
2	0	$1(t_h + t_l), 0H, \ge 1V$	$\overline{HJ}, \overline{2b}, \overline{0fj}, \overline{1(t_h+t_l)}, \overline{0H}, \geq \overline{1V}$	
2	0	$\geq 2(t_h+t_l), 0H, \geq 1V$	HJ, 2b, 0fj, ≥2(t_h + t_l), 0H, ≥1V	
2	≥ 1	$Ot_h, Ot_l, \geq 1H, \geq 1V$	HJ, 2b, ≥ 1 fj, 0t _h , 0t _l , ≥ 1 H, ≥ 1 V	
2	≥ 1	$\geq 2(t_h+t_l), \geq 1H, 0V$	HJ, 2b, ≥ 1 fj, $\geq 2(t_h+t_l)$, ≥ 1 H, 0V	
≥3	0	$\geq 1 \mathrm{H}, \geq 1 (\mathrm{V} + \mathrm{t}_l + \mathrm{t}_h)$	$\overline{\mathrm{HJ}}, \geq \overline{3}\mathrm{b}, \overline{0}\mathrm{fj}, \geq \overline{1}\mathrm{H}, \geq \overline{1}(\mathrm{V}+\mathrm{t}_l+\mathrm{t}_h)$	
≥3	≥ 1	$0\mathrm{H}, \geq 1(\mathrm{V} + \mathfrak{t}_l + \mathfrak{t}_h)$	HJ, ≥3b, ≥1fj, 0H, ≥1(V+t _l +t _h)	

- All signal search regions require the presence of a forward jet to suppress background
- Validation regions are constructed by inverting the forward jet requirement or most relevant boosted object requirement of a search region
- The validation regions are kinematically similar to the search regions

Pre-Fit/Post-Fit *m*_{eff} Distributions

 Post-fit agreement between data and SM prediction is good overall including the most sensitive signal search regions

[ATLAS-CONF-2021-040]


MICHIGAN STATE UNIVERSITY

Decay Width - Branching Ratio Limit Interpretation

- Limits derived under the assumption that BR(T→Ht)=BR(T→Zt) and BR(T→Ht)+BR(T→Zt)+BR(T→Wb) = 1
- White contour lines indicate exclusion limits of equal mass
- Values above contour lines are excluded for that particular mass

