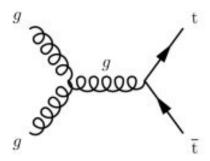
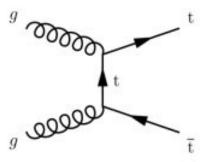
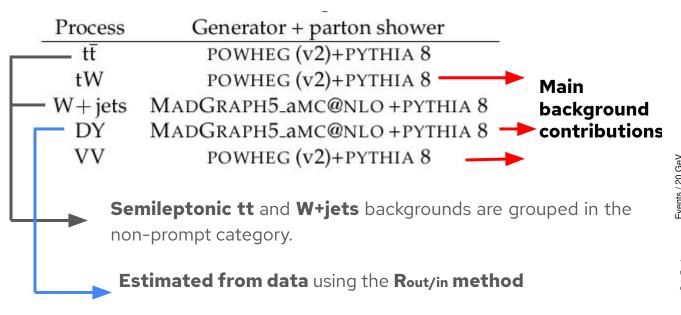


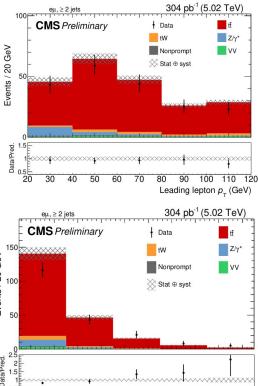
Measurement of the inclusive top-antitop pair production cross section in pp collisions at 5.02 TeV


Carlos Vico Villalba on behalf of the CMS collaboration


14th International Workshop on Top Quark Physics (TOP2021)

Introduction

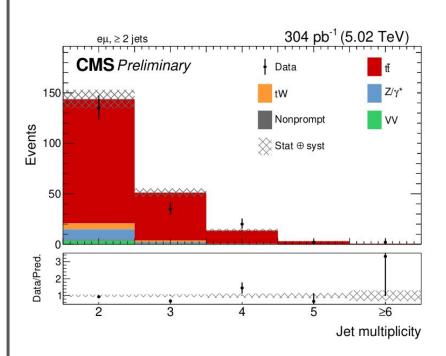

- → A measurement of the production cross section of top-antitop pair production at **5.02 TeV** in pp collisions, recorded by the **CMS experiment**, is presented <u>CMS-PAS-TOP-20-004</u>.
- → The study of the production and properties of the **top quark** is one of the **core** elements of the LHC physics programme.
- → The main production mechanism of top quarks at the LHC is through top-antitop annihilation.
- → The analysis is performed using data from the low pileup run of 2017 → **Statistically limited measurement** (L=304 1/pb and ~2 pileup interactions per bunch crossing).
- → Focus in dileptonic final states
- \rightarrow The result is combined with the measured cross section from the I+jets 10.1007/JHEP03(2018)115



Analysis strategy

- → **Monte Carlo** simulated event samples are used to define the analysis strategy
 - ◆ To estimate the **background contribution** in the final state
 - Evaluation of efficiencies and uncertainties.

80


Leading jet p_ (GeV)

Analysis strategy

→ Particle candidates are reconstructed using the Particle Flow algorithm

electrons	$ \eta < 2.5, p_T > 10 \text{ GeV}$
Muons	$ \eta < 2.4, p_T > 10 \text{ GeV}$
Jets	$ \eta < 2.4, p_T > 25 \text{ GeV}$

- → Baseline selection: 2 leptons (eµ) with opposite sign + 2 jets.
- → Further **kinematic requirements** are applied to define the full phase space
 - ◆ Leading lepton is required to have p_T>20 GeV.
 - Dilepton invariant mass above 20 GeV

Results

2017: dilepton channel only

assumptions

- → The tt production cross section is extracted by performing a counting experiment
- → The measurement of the cross section is affected by sources of systematic uncertainty that originate from detector effects or theoretical

$$\sigma_{\rm t\bar{t}} = 60.3 \pm (5.0 \text{ (stat)}) \pm 2.8 \text{ (syst)} \pm 0.9 \text{ (lumi) pb}$$

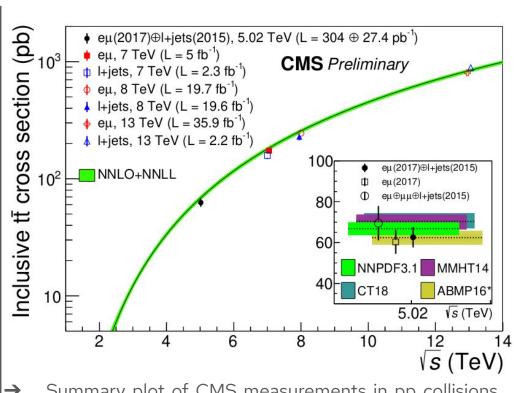
2017+2015: (dilepton channel) # (lepton + jets)

- To reduce the statistical limitation of the presented measurement, the result is combined with that obtained in the I + jets decay channel (L=27.4 1/pb)
- → The combination is performed using the **Best Linear Unbiased Estimator**.

$$\sigma_{\rm t\bar{t}} = 62.6 \pm 4.1 \; ({\rm stat}) \pm 3.0 \; ({\rm syst+lumi}) \; {\rm pb}$$

Source	$\Delta \sigma_{t\bar{t}}/\sigma_{t\bar{t}}$ (%)
tW	1.0
Nonprompt leptons	0.4
Drell–Yan	1.8
VV	0.8
Trigger efficiency	1.3
L1 prefiring	1.4
Electron efficiency	1.6
Muon efficiency	0.6
JES	2.2
JER	1.2
μ_R , μ_F scales	0.2
$PDF \oplus \alpha_{S}(m_{Z})$	0.3
Final state radiation	1.1
Initial state radiation	< 0.1
h_{damp}	1.0
Underlying event tune	0.7
Total systematic	4.3
Integrated luminosity	1.5
Statistical uncertainty	8.2

Summary and conclusions


This analysis has achieved an improvement of 5.1% (from 13% in 2015 to 7.9% in 2017+2015) in the total uncertainty.

Predicted value:

$$\sigma_{t\bar{t}}^{SM} = 66.8 \pm ^{1.9}_{2.3} \text{ (scale)} \pm 1.7 \text{(PDF)} \pm ^{1.4}_{1.3} (\alpha_S(m_Z)) \text{ pb.}$$

Measured value:

$$\sigma_{\mathrm{t\bar{t}}} = 62.6 \pm 4.1 \; \mathrm{(stat)} \pm 3.0 \; \mathrm{(syst+lumi)} \; \mathrm{pb}$$

Summary plot of CMS measurements in pp collisions at different center-of-mass energies.

Thank you very much for your attention

Backup slides

Monte Carlo simulations

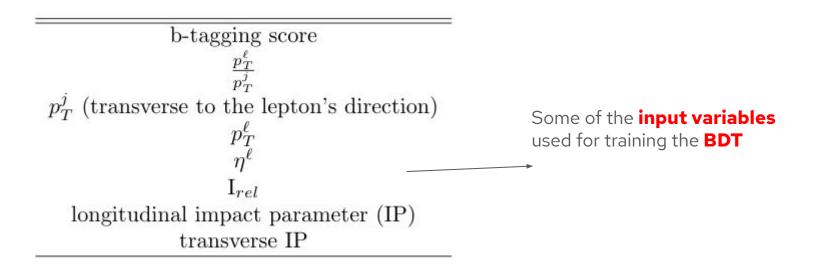
- → Simulated tt events are generated at next-to-leading order (NLO) using POWHEG (v2) [mtop = 172.5 GeV]
- → Events are interfaced with PYTHIA 8 (v230), using the CP5 tune for PS, hadronization and UE
- → Nominal PDFs are simulated using NNPDF3.1 at next-to-next-to-leading order

Process	Generator + parton shower	Cross section order		
tŧ	POWHEG (v2)+PYTHIA 8	(NNLO+NNLL) [25, 26]		
tW	POWHEG ($v2$)+PYTHIA 8	(approximate NNLO) [27]		
W+ jets	MadGraph5_amc@nlo +pythia 8	(NNLO[QCD]+NLO[EWK]) [28]		
DY	MadGraph5_amc@nlo +pythia 8	(NNLO[QCD]+NLO[EWK]) [28]		
VV	POWHEG ($v2$)+PYTHIA 8	(NLO)		

Rout/min method

- → Events with same-flavored leptons are used to normalize the yield of different-flavored pairs from DY production of T lepton pairs
- → A data-to-simulation normalization factor is estimated from the number of events in data within a 15 GeV window around the Z boson mass
- → The **norm. factor is extrapolated to the number of events outside the Z mass window** with corrections applied using control regions enriched in DY events in data
- \rightarrow This factor is measured to be **0.91** \pm **0.01**
- → The **stability of the method** against a potential mismodeling of the jet multiplicity was **checked** and found to be within 30%
- → Considered as an extra systematic uncertainty to this background estimation.

Object and event selection


- → **Events of interest** are selected online using a two-tiered trigger system: **L1& HLT**
- \rightarrow Only events that fired at least one of the **single-lepton** triggers with transverse momentum (p_T) thresholds greater than 12 (17) GeV in the case of muons (electrons) are considered.

→ Particle candidates are reconstructed using the Particle Flow algorithm

	Electrons		Muons		Jets
$\overset{\rightarrow}{\rightarrow}$	η < 2.5 pT > 10 GeV MVA score Conversions veto	→	η < 2.4 pT > 10 GeV Geometrical criteria Conversions veto	→ →	AK4 jets pT > 25 GeV b-tags: DEEPJET loose working point

Nonprompt lepton identification

→ Nonprompt (not coming from W/Z) leptons are identified using a MVA based on a boosted decission tree

→ To further suppress nonprompt leptons originating from b quark decays, leptons associated with a jet satisfying the loose working point of the DEEPCSV b tagging algorithm are rejected.

Yields at the final state

Process		Event yield		
tW	8	± 0.1	± 2	
Nonprompt leptons	1.7	\pm 0.1	\pm 0.9	
DY	10	\pm 0.1	\pm 3	
VV	4	\pm 0.1	± 1	
Total background tt	24 187	± 0.2 ± 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Data	194			